現在、STM32F303RE チップを搭載した Nucleo-64 ボードを使用しています。プログラミングには、Arduino IDE と STM32 パッケージを使用します。レジスタとライブラリ関数を同時に学習しなければならない場合、かなり混乱すると思うので、当面は HAL を避けたいと思います。
4 つの入力信号を 5.1 Msps (F303 の最大値) で並列にサンプリングできるようにしたいと考えています。私の計画は、ADC を実行し続けることでした。次に、サンプルを取得する場合は、DMA フラグをリセットし、カウンター (CNDTR-Register) をキャプチャするサンプルの量に設定します。
次の部分は、これを達成するための私の試みを示しています。基本的にはほとんど機能していますが、限られた回数しか機能していません。どのくらいの頻度で機能するかは、プログラムの特定の部分で入力するランダムな睡眠値に依存するようです。例: takeSamples() 関数の後に 10 ミリ秒の遅延を入力すると、プログラムはメイン ループの 41 サイクルの間動作しますが、スタックします。
スタックすると、次のようになります。 DMA-CNDTR レジスタは 1 つの値だけ減少し、そこにとどまります。そのため、プログラムはレジスタ値がゼロになるのを待っていますが、これは決して起こりません。ADC は常にサンプリングを行っており、ADC データ レジスタを正常に読み取ることができます。
DMA が一定時間後にデータ転送を停止する原因を知っている人はいますか?
プログラムの関連部分は次のとおりです。
void setup() {
Serial.begin(57600);
// Enable clocks
RCC->AHBENR |= (1 << 17); // GPIOA
RCC->AHBENR |= (1 << 18); // GPIOB
// Set ADC pins to analog input
GPIOA->MODER |= (0b11 << 0); // PA0 for ADC1
GPIOA->MODER |= (0b11 << 8); // PA4 for ADC2
GPIOB->MODER |= (0b11 << 2); // PB1 for ADC3
GPIOB->MODER |= (0b11 << 24); // PB1 for ADC4
initClock();
DMA_init();
ADC_init();
// Start conversion
ADC1->CR |= (1 << 2);
ADC3->CR |= (1 << 2);
}
void initClock()
{
FLASH->ACR |= (0b10 << 0); // add two wait states
RCC->CR |= (1 << 18); // Bypass HSE, use external clock signal from STLink instead
RCC->CR &= ~(1 << 24); // turn off PLL
delay(100);
RCC->CFGR |= (0b0000 << 4); // Do not divide system clock
RCC->CFGR |= (0b0111 << 18); // PLL multiply = 9
RCC->CFGR |= (0b10 << 15); // use HSE as PLL source
RCC->CFGR |= (1 << 10); // not divided
delay(100);
RCC->CR |= (1 << 24); // turn on PLL
delay(100);
}
void ADC_init(void) {
RCC->CFGR2 |= (0b10000 << 4); // Prescaler
RCC->CFGR2 |= (0b10000 << 9); // Prescaler
RCC->AHBENR |= (1 << 28); // turn on ADC12 clock
RCC->AHBENR |= (1 << 29); // turn on ADC34 clock
// Set ADC clock
ADC12_COMMON->CCR |= (0b01 << 16); // 0b01
ADC34_COMMON->CCR |= (0b01 << 16); // 0b01
// disable the ADC
ADC1->CR &= ~(1 << 0);
ADC2->CR &= ~(1 << 0);
ADC3->CR &= ~(1 << 0);
ADC4->CR &= ~(1 << 0);
// enable the ADC voltage regulator
ADC1->CR &= ~(1 << 29);
ADC2->CR &= ~(1 << 29);
ADC3->CR &= ~(1 << 29);
ADC4->CR &= ~(1 << 29);
ADC1->CR |= (1 << 28);
ADC2->CR |= (1 << 28);
ADC3->CR |= (1 << 28);
ADC4->CR |= (1 << 28);
// start ADC calibration cycle
ADC1->CR |= (1 << 31);
// wait for calibration to complete
while (ADC1->CR & (1 << 31));
// start ADC calibration cycle
ADC2->CR |= (1 << 31);
// wait for calibration to complete
while (ADC2->CR & (1 << 31));
// start ADC calibration cycle
ADC3->CR |= (1 << 31);
// wait for calibration to complete
while (ADC3->CR & (1 << 31));
// start ADC calibration cycle
ADC4->CR |= (1 << 31);
// wait for calibration to complete
while (ADC4->CR & (1 << 31));
// enable the ADC
ADC1->CR |= (1 << 0);
ADC2->CR |= (1 << 0);
ADC3->CR |= (1 << 0);
ADC4->CR |= (1 << 0);
while (!(ADC1->ISR & (1 << 0)));
while (!(ADC2->ISR & (1 << 0)));
while (!(ADC3->ISR & (1 << 0)));
while (!(ADC4->ISR & (1 << 0)));
// Select ADC Channels
ADC1->SQR1 = (1 << 6);
ADC2->SQR1 = (1 << 6);
ADC3->SQR1 = (1 << 6);
ADC4->SQR1 = (3 << 6);
// Set sampling time for regular group 1
ADC1->SMPR1 |= (0b000 << 3); // 0b000 -> 1.5 clock cycles, shortest available sampling time
ADC2->SMPR1 |= (0b000 << 3);
ADC3->SMPR1 |= (0b000 << 3);
ADC4->SMPR1 |= (0b000 << 3);
// Regular sequence settings
ADC1->SQR1 |= (0b0000 << 0); // One conversion in the regular sequence
ADC2->SQR1 |= (0b0000 << 0);
ADC3->SQR1 |= (0b0000 << 0);
ADC4->SQR1 |= (0b0000 << 0);
// Enable continuous conversion mode
ADC1->CFGR |= (1 << 13); // Master ADC1 + ADC2
ADC3->CFGR |= (1 << 13); // Master ADC3 + ADC4
ADC12_COMMON->CCR |= (0b00110 << 0);
ADC34_COMMON->CCR |= (0b00110 << 0);
// DMA mode
ADC12_COMMON->CCR |= (0 << 13); // 0 -> One Shot; 1 -> Circular
ADC34_COMMON->CCR |= (0 << 13);
// DMA mode for 12-bit resolution
ADC12_COMMON->CCR |= (0b10 << 14);
ADC34_COMMON->CCR |= (0b10 << 14);
}
void DMA_init(void) {
// Enable clocks
RCC->AHBENR |= (1 << 0); // DMA1
RCC->AHBENR |= (1 << 1); // DMA2
// Transfer complete interrupt enable
DMA1_Channel1->CCR |= (1 << 1);
DMA2_Channel5->CCR |= (1 << 1);
// Memory increment mode
DMA1_Channel1->CCR |= (1 << 7);
DMA2_Channel5->CCR |= (1 << 7);
// Peripheral size
DMA1_Channel1->CCR |= (0b11 << 8);
DMA2_Channel5->CCR |= (0b11 << 8);
// Memory size
DMA1_Channel1->CCR |= (0b11 << 10);
DMA2_Channel5->CCR |= (0b11 << 10);
// Number of data to transfer
DMA1_Channel1->CNDTR = uint32_t(maxSamples);
DMA2_Channel5->CNDTR = uint32_t(maxSamples);
// Peripheral address register
DMA1_Channel1->CPAR |= (uint32_t)&ADC12_COMMON->CDR;
DMA2_Channel5->CPAR |= (uint32_t)&ADC34_COMMON->CDR;
// Memory address register
DMA1_Channel1->CMAR |= uint32_t(&dataPoints1232);
DMA2_Channel5->CMAR |= uint32_t(&dataPoints3432);
// Reset flags
DMA1->IFCR |= 0xFF;
DMA2->IFCR |= 0xFF;
}
void takeSamples(void) {
// Reset flags
DMA1->IFCR |= (0b1111111111111111111111111111111 << 0);
DMA2->IFCR |= (0b1111111111111111111111111111111 << 0);
// Number of data to transfer
DMA1_Channel1->CNDTR = uint32_t(maxSamples);
DMA2_Channel5->CNDTR = uint32_t(maxSamples);
delay(10); // does not work without this random delay
elapsedTime = micros();
// Enable DMA
DMA1_Channel1->CCR |= (1 << 0);
DMA2_Channel5->CCR |= (1 << 0);
while ((DMA1_Channel1->CNDTR > 0) || (DMA2_Channel5->CNDTR > 0))
}
elapsedTime = micros() - elapsedTime;
// Reset flags
DMA1->IFCR |= (0b1111111111111111111111111111111 << 0);
DMA2->IFCR |= (0b1111111111111111111111111111111 << 0);;
DMA1_Channel1->CCR &= ~(1 << 0);
DMA2_Channel5->CCR &= ~(1 << 0);
// ADC stop conversion
ADC1->CR |= (1 << 4);
ADC3->CR |= (1 << 4);
while ((ADC1->CR & (1 << 2)) || (ADC3->CR & (1 << 2)));
ADC12_COMMON->CCR &= ~(0b10 << 14);
ADC34_COMMON->CCR &= ~(0b10 << 14);
ADC12_COMMON->CCR |= (0b10 << 14);
ADC34_COMMON->CCR |= (0b10 << 14);
// ADC start conversion
ADC1->CR |= (1 << 2);
ADC3->CR |= (1 << 2);
}
void loop() {
takeSamples();
Serial.print("Elapsed time: ");
Serial.println(elapsedTime);
}
この問題に関するヒントやヒントをいただければ幸いです。
こんにちはベニー
編集:STM32F401チップを搭載したnucleo-64でも同じ問題がありました。一方、STM32F4 Discovery は問題なく動作しました。私のF103フライトコントローラーボードでもそのような問題はありませんでした.