libgcrypt のドキュメントには次のように書かれています。
An RSA private key is described by this S-expression:
(private-key
(rsa
(n n-mpi)
(e e-mpi)
(d d-mpi)
(p p-mpi)
(q q-mpi)
(u u-mpi)))
...と...
p-mpi
RSA secret prime p.
q-mpi
RSA secret prime q with p < q.
u-mpi
Multiplicative inverse u = p^{-1} mod q.
...と...
Note that OpenSSL uses slighly different parameters: q < p and u = q^{-1} mod p.
To use these parameters you will need to swap the values and recompute u.
Here is example code to do this:
if (gcry_mpi_cmp (p, q) > 0)
{
gcry_mpi_swap (p, q);
gcry_mpi_invm (u, p, q);
}
一方の p がより小さい素数で、もう一方の q がより小さい素数である場合、p と q を交換する以外は 2 つの方程式が同一であるとすると、u を再計算する必要は本当にあるのでしょうか? pとqを交換するだけでは不十分ですか?
副次的な質問として、gcrypt が PKCS#1 エンコーディングと同じ値を使用しない理由が知りたいです。
RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
o modulus is the RSA modulus n.
o publicExponent is the RSA public exponent e.
o privateExponent is the RSA private exponent d.
o prime1 is the prime factor p of n.
o prime2 is the prime factor q of n.
o exponent1 is d mod (p - 1).
o exponent2 is d mod (q - 1).
o coefficient is the CRT coefficient q^(-1) mod p.