6

mtcarsデータセット(ベースRバージョン2.12.1の一部)の要約統計量を取得したいとします。以下では、車をエンジンシリンダーの数に従ってグループ化し、の残りの変数のグループごとの平均を取りますmtcars

> str(mtcars)
'data.frame': 32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
> ddply(mtcars, .(cyl), mean)
       mpg cyl     disp        hp     drat       wt     qsec        vs        am     gear
1 26.66364   4 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909
2 19.74286   6 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3 15.10000   8 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
      carb
1 1.545455
2 3.428571
3 3.500000

しかし、私のグループ化変数がたまたま要因である場合、物事はよりトリッキーになります。ddply()ファクターを取得できないため、ファクターのレベルごとに警告をスローしますmean()

> mtcars$cyl <- as.factor(mtcars$cyl)
> str(mtcars)
'data.frame': 32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
> ddply(mtcars, .(cyl), mean)
       mpg cyl     disp        hp     drat       wt     qsec        vs        am     gear
1 26.66364  NA 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909
2 19.74286  NA 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3 15.10000  NA 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
      carb
1 1.545455
2 3.428571
3 3.500000
Warning messages:
1: In mean.default(X[[2L]], ...) :
  argument is not numeric or logical: returning NA
2: In mean.default(X[[2L]], ...) :
  argument is not numeric or logical: returning NA
3: In mean.default(X[[2L]], ...) :
  argument is not numeric or logical: returning NA
>

ですから、要約統計量を間違った方法で生成しようとしているのではないかと思います。

通常、因子別またはグループ別の要約統計量(平均、標準偏差など)のデータ構造をどのように生成しますか?他のものを使用する必要がありddply()ますか?を使用できる場合ddply()、グループ化係数の平均をとろうとしたときに発生するエラーを回避するにはどうすればよいですか?

4

2 に答える 2

8

使用numcolwise(mean)numcolwise関数は、引数(関数)を数値列のみで動作する関数に変換します(そして、カテゴリー/因子列を無視します)。

  > ddply(mtcars, .(cyl), numcolwise(mean))

      cyl      mpg     disp        hp     drat       wt     qsec        vs
    1   4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909
    2   6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286
    3   8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000
             am     gear     carb
    1 0.7272727 4.090909 1.545455
    2 0.4285714 3.857143 3.428571
    3 0.1428571 3.285714 3.500000
于 2011-01-29T03:33:49.760 に答える
2

ここでの答えではなく、観察です。これddply()自体は問題ではありません。これを見てください。次の両方が正常に機能して、平均の表を作成します。

aggregate(mtcars, by=list(mtcars$cyl), mean)
apply(mtcars, 2, function(col) tapply(col, INDEX=mtcars$cyl, FUN=mean))

しかしmtcars$cyl <- as.factor(mtcars$cyl)、上記のどちらの作業も行わなかった後、Rは因子の列の平均を取る方法を知らないためです。に渡されるものからその列(「cyl」は列2)を削除することで、これを回避できますmean()

aggregate(mtcars[ , -2], by=list(mtcars$cyl), mean)
apply(mtcars[ , -2], 2, function(col) tapply(col, INDEX=mtcars$cyl, FUN=mean))

しかし、それはかなり不格好です。

于 2011-01-29T04:06:39.587 に答える