4

YCbCrからBGRAへの画像の色変換を実行しようとしています(Aビットについては聞かないでください、そのような頭痛の種です)。

とにかく、これはできるだけ速く実行する必要があるので、SSE2を利用するためにコンパイラ組み込み関数を使用して記述しました。これはSIMDランドへの私の最初のベンチャーであり、私は基本的に初心者なので、非効率的にやっていることがたくさんあると確信しています。

実際の色変換を行うための私の算術コードは特に遅いことが判明し、IntelのVTuneはそれを重大なボトルネックとして示しています。

だから、私は次のコードをスピードアップすることができますか?一度に4ピクセルの32ビットで実行されます。私はもともと(上のループのように)一度に8ビット、16ピクセルでそれを実行しようとしましたが、計算によって整数のオーバーフローが発生し、変換が失敗します。Intel jpegデコードを含むこのプロセス全体は、フルHDの単一フィールドで最大14ミリ秒かかります。少なくとも12ミリ秒、理想的には10ミリ秒まで下げることができれば素晴らしいと思います。

ヘルプやヒントをいただければ幸いです。ありがとう!

const __m128i s128_8    = _mm_set1_epi8((char)128);


const int nNumPixels = roi.width * roi.height;

for (int i=0; i<nNumPixels; i+=32)
{
    // Go ahead and prefetch our packed UV Data.
    // As long as the load remains directly next, this saves us time.
    _mm_prefetch((const char*)&pSrc8u[2][i],_MM_HINT_T0); 

    // We need to fetch and blit out our k before we write over it with UV data.
    __m128i sK1 = _mm_load_si128((__m128i*)&pSrc8u[2][i]);
    __m128i sK2 = _mm_load_si128((__m128i*)&pSrc8u[2][i+16]);

    // Using the destination buffer temporarily here so we don't need to waste time doing a memory allocation.
    _mm_store_si128 ((__m128i*)&m_pKBuffer[i],      sK1);
    _mm_store_si128 ((__m128i*)&m_pKBuffer[i+16],   sK2);

    // In theory, this prefetch needs to be some cycles ahead of the first read. It isn't, yet it does appear to save us time. Worth investigating.
    _mm_prefetch((const char*)&pSrc8u[1][i],_MM_HINT_T0); 

    __m128i sUVI1 = _mm_load_si128((__m128i*)&pSrc8u[1][i]);
    __m128i sUVI2 = _mm_load_si128((__m128i*)&pSrc8u[1][i+16]);  

    // Subtract the 128 here ahead of our YCbCr -> BGRA conversion so we can go 16 pixels at a time rather than 4.
    sUVI1 = _mm_sub_epi8(sUVI1, s128_8);
    sUVI2 = _mm_sub_epi8(sUVI2, s128_8);

    // Swizzle and double up UV data from interleaved 8x1 byte blocks into planar
    __m128i sU1 = _mm_unpacklo_epi8(sUVI1, sUVI1);
    __m128i sV1 = _mm_unpackhi_epi8(sUVI1, sUVI1);

    __m128i sU2 = _mm_unpacklo_epi8(sUVI2, sUVI2);  
    __m128i sV2 = _mm_unpackhi_epi8(sUVI2, sUVI2);  

    _mm_store_si128((__m128i*)&pSrc8u[1][i],        sU1);
    _mm_store_si128((__m128i*)&pSrc8u[1][i+16],     sU2); 

    _mm_store_si128((__m128i*)&pSrc8u[2][i],        sV1);
    _mm_store_si128((__m128i*)&pSrc8u[2][i+16],     sV2); 
}

const __m128i s16   = _mm_set1_epi32(16);
const __m128i s299  = _mm_set1_epi32(299);
const __m128i s410  = _mm_set1_epi32(410);
const __m128i s518  = _mm_set1_epi32(518);
const __m128i s101  = _mm_set1_epi32(101);
const __m128i s209  = _mm_set1_epi32(209);

Ipp8u* pDstP = pDst8u;
for (int i=0; i<nNumPixels; i+=4, pDstP+=16)
{
    __m128i sK = _mm_set_epi32(m_pKBuffer[i],           m_pKBuffer[i+1],            m_pKBuffer[i+2],            m_pKBuffer[i+3]);

    __m128i sY = _mm_set_epi32(pSrc8u[0][i],            pSrc8u[0][i+1],             pSrc8u[0][i+2],             pSrc8u[0][i+3]);
    __m128i sU = _mm_set_epi32((char)pSrc8u[1][i],      (char)pSrc8u[1][i+1],       (char)pSrc8u[1][i+2],       (char)pSrc8u[1][i+3]);
    __m128i sV = _mm_set_epi32((char)pSrc8u[2][i],      (char)pSrc8u[2][i+1],       (char)pSrc8u[2][i+2],       (char)pSrc8u[2][i+3]);

    // N.b. - Attempted to do the sub 16 in 8 bits similar to the sub 128 for U and V - however doing it here is quicker
    // as the time saved on the arithmetic is less than the time taken by the additional loads/stores needed in the swizzle loop
    sY = _mm_mullo_epi32(_mm_sub_epi32(sY, s16), s299);

    __m128i sR  = _mm_srli_epi32(_mm_add_epi32(sY,_mm_mullo_epi32(s410, sV)), 8);
    __m128i sG  = _mm_srli_epi32(_mm_sub_epi32(_mm_sub_epi32(sY, _mm_mullo_epi32(s101, sU)),_mm_mullo_epi32(s209, sV)), 8);
    __m128i sB  = _mm_srli_epi32(_mm_add_epi32(sY, _mm_mullo_epi32(s518, sU)), 8);

    //Microsoft's YUV Conversion
    //__m128i sC = _mm_sub_epi32(sY, s16);
    //__m128i sD = _mm_sub_epi32(sU, s128);
    //__m128i sE = _mm_sub_epi32(sV, s128);
    //
    //__m128i sR =  _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(s298, sC), _mm_mullo_epi32(s409, sE)), s128), 8);
    //__m128i sG    = _mm_srli_epi32(_mm_add_epi32(_mm_sub_epi32(_mm_mullo_epi32(s298, sC), _mm_sub_epi32(_mm_mullo_epi32(s100, sD), _mm_mullo_epi32(s208, sE))), s128), 8);
    //__m128i sB    = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(_mm_mullo_epi32(s298, sC), _mm_mullo_epi32(s516, sD)), s128), 8);

    __m128i sKGl = _mm_unpacklo_epi32(sK, sG);
    __m128i sKGh = _mm_unpackhi_epi32(sK, sG);

    __m128i sRBl = _mm_unpacklo_epi32(sR, sB);
    __m128i sRBh = _mm_unpackhi_epi32(sR, sB);

    __m128i sKRGB1 = _mm_unpackhi_epi32(sKGh,sRBh);
    __m128i sKRGB2 = _mm_unpacklo_epi32(sKGh,sRBh);
    __m128i sKRGB3 = _mm_unpackhi_epi32(sKGl,sRBl);
    __m128i sKRGB4 = _mm_unpacklo_epi32(sKGl,sRBl);

    __m128i p1 = _mm_packus_epi16(sKRGB1, sKRGB2);
    __m128i p2 = _mm_packus_epi16(sKRGB3, sKRGB4);

    __m128i po = _mm_packus_epi16(p1, p2);

    _mm_store_si128((__m128i*)pDstP, po);
}
4

1 に答える 1

5

ロードとストアの数に比べて計算がほとんどないため、ここでは帯域幅が制限されている可能性があります。

1つの提案:本質的なものを取り除く_mm_prefetch-それらはほぼ確実に役に立たず、より最近のCPU(自動プリフェッチですでにかなり良い仕事をしている)での動作を妨げる可能性さえあります。

注目すべき別の領域:

__m128i sK = _mm_set_epi32(m_pKBuffer[i],           m_pKBuffer[i+1],            m_pKBuffer[i+2],            m_pKBuffer[i+3]);
__m128i sY = _mm_set_epi32(pSrc8u[0][i],            pSrc8u[0][i+1],             pSrc8u[0][i+2],             pSrc8u[0][i+3]);
__m128i sU = _mm_set_epi32((char)pSrc8u[1][i],      (char)pSrc8u[1][i+1],       (char)pSrc8u[1][i+2],       (char)pSrc8u[1][i+3]);
__m128i sV = _mm_set_epi32((char)pSrc8u[2][i],      (char)pSrc8u[2][i+1],       (char)pSrc8u[2][i+2],       (char)pSrc8u[2][i+3]);

これにより、多くの不要な命令が生成されます。ここで使用する必要が_mm_load_xxxあり_mm_unpackxx_xxxます。より多くのコードのように見えますが、はるかに効率的です。そして、おそらくループの反復ごとに4ではなく16ピクセルを処理する必要があります。そうすれば、8ビット値のベクトルを1回ロードし、必要に応じて4つの値の各セットを32ビットintのベクトルとして取得するために解凍します。

于 2011-02-17T16:35:07.787 に答える