私は TensorFlow と画像分類にかなり慣れていないため、重要な知識が不足している可能性があり、おそらくこの問題に直面している理由です。
ResNet50
ライブラリを使用して犬種の画像分類を目的として TensorFlow でモデルを構築し、ImageNet
さまざまな犬種を検出できるニューラル ネットワークのトレーニングに成功しました。
私は今、犬のランダムな画像をモデルに渡して、犬の品種が何であるかについての出力を吐き出したいところです。ただし、この関数を実行すると、行を実行しようとするとdog_breed_predictor("<file path to image>")
エラーが発生し、これを回避する方法がわかりません。expected global_average_pooling2d_1_input to have shape (1, 1, 2048) but got array with shape (7, 7, 2048)
Resnet50_model.predict(bottleneck_feature)
これがコードです。問題に関連していると思われるものはすべて提供しました。
import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from tqdm import tqdm
from sklearn.datasets import load_files
np_utils = tf.keras.utils
# define function to load train, test, and validation datasets
def load_dataset(path):
data = load_files(path)
dog_files = np.array(data['filenames'])
dog_targets = np_utils.to_categorical(np.array(data['target']), 133)
return dog_files, dog_targets
# load train, test, and validation datasets
train_files, train_targets = load_dataset('dogImages/dogImages/train')
valid_files, valid_targets = load_dataset('dogImages/dogImages/valid')
test_files, test_targets = load_dataset('dogImages/dogImages/test')
#define Resnet50 model
Resnet50_model = ResNet50(weights="imagenet")
def path_to_tensor(img_path):
#loads RGB image as PIL.Image.Image type
img = image.load_img(img_path, target_size=(224, 224))
#convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)
x = image.img_to_array(img)
#convert 3D tensor into 4D tensor with shape (1, 224, 224, 3)
return np.expand_dims(x, axis=0)
from keras.applications.resnet50 import preprocess_input, decode_predictions
def ResNet50_predict_labels(img_path):
#returns prediction vector for image located at img_path
img = preprocess_input(path_to_tensor(img_path))
return np.argmax(Resnet50_model.predict(img))
###returns True if a dog is detected in the image stored at img_path
def dog_detector(img_path):
prediction = ResNet50_predict_labels(img_path)
return ((prediction <= 268) & (prediction >= 151))
###Obtain bottleneck features from another pre-trained CNN
bottleneck_features = np.load("bottleneck_features/DogResnet50Data.npz")
train_DogResnet50 = bottleneck_features["train"]
valid_DogResnet50 = bottleneck_features["valid"]
test_DogResnet50 = bottleneck_features["test"]
###Define your architecture
Resnet50_model = tf.keras.Sequential()
Resnet50_model.add(tf.keras.layers.GlobalAveragePooling2D(input_shape=train_DogResnet50.shape[1:]))
Resnet50_model.add(tf.contrib.keras.layers.Dense(133, activation="softmax"))
Resnet50_model.summary()
###Compile the model
Resnet50_model.compile(loss="categorical_crossentropy", optimizer="rmsprop", metrics=["accuracy"])
###Train the model
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath="saved_models/weights.best.ResNet50.hdf5",
verbose=1, save_best_only=True)
Resnet50_model.fit(train_DogResnet50, train_targets,
validation_data=(valid_DogResnet50, valid_targets),
epochs=20, batch_size=20, callbacks=[checkpointer])
###Load the model weights with the best validation loss.
Resnet50_model.load_weights("saved_models/weights.best.ResNet50.hdf5")
###Calculate classification accuracy on the test dataset
Resnet50_predictions = [np.argmax(Resnet50_model.predict(np.expand_dims(feature, axis=0))) for feature in test_DogResnet50]
#Report test accuracy
test_accuracy = 100*np.sum(np.array(Resnet50_predictions)==np.argmax(test_targets, axis=1))/len(Resnet50_predictions)
print("Test accuracy: %.4f%%" % test_accuracy)
def extract_Resnet50(tensor):
from keras.applications.resnet50 import ResNet50, preprocess_input
return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
def dog_breed(img_path):
#extract bottleneck features
bottleneck_feature = extract_Resnet50(path_to_tensor(img_path))
#obtain predicted vector
predicted_vector = Resnet50_model.predict(bottleneck_feature) #shape error occurs here
#return dog breed that is predicted by the model
return dog_names[np.argmax(predicted_vector)]
def dog_breed_predictor(img_path):
#determine the predicted dog breed
breed = dog_breed(img_path)
#display the image
img = cv2.imread(img_path)
cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(cv_rgb)
plt.show()
#display relevant predictor result
if dog_detector(img_path):
print("This is a dog and its breed is: " + str(breed))
elif face_detector(img_path):
print("This is a human but it looks like a: " + str(breed))
else:
print("I don't know what this is.")
dog_breed_predictor("dogImages/dogImages/train/016.Beagle/Beagle_01126.jpg")
関数に入力している画像は、モデルのトレーニングに使用されたものと同じデータセットからのものです。モデルが意図したとおりに機能しているかどうかを確認したかったため、このエラーによりさらに混乱します。私は何が間違っているのでしょうか?