lgb.trainとlgb.cvのドキュメントを読んだ後、別の関数を作成し、それを.xmlget_ith_pred
内で繰り返し呼び出す必要がありlgb_f1_score
ました。
関数の docstring は、それがどのように機能するかを説明しています。LightGBM ドキュメントと同じ引数名を使用しました。これは任意の数のクラスで機能しますが、バイナリ分類では機能しません。バイナリの場合、preds
陽性クラスの確率を含む 1D 配列です。
from sklearn.metrics import f1_score
def get_ith_pred(preds, i, num_data, num_class):
"""
preds: 1D NumPY array
A 1D numpy array containing predicted probabilities. Has shape
(num_data * num_class,). So, For binary classification with
100 rows of data in your training set, preds is shape (200,),
i.e. (100 * 2,).
i: int
The row/sample in your training data you wish to calculate
the prediction for.
num_data: int
The number of rows/samples in your training data
num_class: int
The number of classes in your classification task.
Must be greater than 2.
LightGBM docs tell us that to get the probability of class 0 for
the 5th row of the dataset we do preds[0 * num_data + 5].
For class 1 prediction of 7th row, do preds[1 * num_data + 7].
sklearn's f1_score(y_true, y_pred) expects y_pred to be of the form
[0, 1, 1, 1, 1, 0...] and not probabilities.
This function translates preds into the form sklearn's f1_score
understands.
"""
# Only works for multiclass classification
assert num_class > 2
preds_for_ith_row = [preds[class_label * num_data + i]
for class_label in range(num_class)]
# The element with the highest probability is predicted
return np.argmax(preds_for_ith_row)
def lgb_f1_score(preds, train_data):
y_true = train_data.get_label()
num_data = len(y_true)
num_class = 70
y_pred = []
for i in range(num_data):
ith_pred = get_ith_pred(preds, i, num_data, num_class)
y_pred.append(ith_pred)
return 'f1', f1_score(y_true, y_pred, average='weighted'), True