0

1 秒あたり 100 データ エントリのセンサー データがあります。最後の列はミリ秒で、今のところすべて 10 です。時間と日付でグループ化されたミリ秒を行単位で合計するにはどうすればよいですか。

testdata <- structure(list(local_date = c("26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017", "26-06-2017",  "26-06-2017", "26-06-2017"), 
                           local_time = c("13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23", "13:58:23",  "13:58:23", "13:58:23", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24",  "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24", "13:58:24" ), 
                           ms = c(10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10)), 
                      .Names = c("local_date",  "local_time", "ms"), row.names = c(NA, -200L), class = c("data.table", "data.frame"))

最初の 100 行はすべて同じ時刻 (13:58:23) と日付 (26-06-2017) を共有していますが、すべて 10 ミリ秒です。結果には、1 秒あたり 10 ミリ秒のエントリが 1 つだけ含まれ、次のミリ秒が前のミリ秒に追加されます。

このスニペットは、シーケンスを使用して結果を作成します。

testdata$ms = rep(seq(from = 10, to = 1000, by = 10), 2)

しかし、元のデータはそれほどきれいではないため、日付と時刻でデータをグループ化し、ミリ秒を行ごとに加算する必要があります。

data.table私は解決策を好むが、dplyrうまくいくだろう。

4

2 に答える 2