0

32 個の変数と 48 個の観測値のデータセットがあります (サブスクリプションによるデータ収集の段階にあるため、観測値は増加します)。このデータセットは多重共線性が高いため、Farrar – Glauber Test を導入しました。テストの個々の尺度 (idiags) には、変数が多重共線性であるかどうかを示す値 0 と 1 を持つ Klein と呼ばれるパラメーターがあります。Klien の値に基づいて、メイン データセットから列を削除する必要があります。データセット imcdiag_idiagval のクライン値に基づいて、メイン データセット (model_df) から削除/ドロップする方法に行き詰まっています。

以下の私のサンプルコード、 model_df0 : ターゲット変数のないデータセット model_df: ターゲット変数のあるデータセット

library(mctest)

#Farrar – Glauber test(F–test) for location of multicollinearity
# Individual Multicollinearity Diagnostic Measures
imcdiag_out = imcdiag(model_df0, model_df$TARGET)
summary(imcdiag_out)
#Output of summary function below,
        Length Class  Mode   
idiags   224   -none- numeric
x       1536   -none- numeric
y         48   -none- numeric
method     0   -none- NULL   
corr       1   -none- logical
call       3   -none- call   
pval      29   -none- numeric
R2         1   -none- numeric
all        1   -none- logical
alldiag  224   -none- logical

imcdiag_idiagval = as.data.frame(imcdiag_out$idiags)

> imcdiag_idiagval$Klein
 [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

32 個の変数のうち、Klein で 1 の値には多重共線性があります。したがって、それらを削除する必要があります

> dput(head(model_df))
structure(list(Mon = structure(c(2014.33333333333, 2014.41666666667, 
2014.5, 2014.58333333333, 2014.66666666667, 2014.75), class = "yearmon"), 
    Al_Prod_Qty = c(4516084.63333333, 4488436.58064516, 4529767.5, 
    4468792.16129032, 4515652.4516129, 4513669.13333333), US_Indus_Growth = c(2.72933333333333, 
    3.00806451612903, 3.25466666666667, 3.41161290322581, 4.03322580645161, 
    3.22333333333333), China_Elec_Rail = c(6.206, 7.30733333333333, 
    7.18741935483871, 5.84322580645161, 3.90166666666667, 5.65290322580645
    ), DS_Index = c(80.4, 79.81, 81.52, 82.78, 86.05, 87.02), 
    Al_Prod_Africa = c(152L, 143L, 144L, 148L, 142L, 144L), Al_Prod_NorthAmerica = c(392L, 
    372L, 386L, 386L, 372L, 379L), Al_Prod_SouthAmerica = c(135L, 
    117L, 117L, 116L, 111L, 120L), Al_Prod_AsiaEXChina = c(203L, 
    193L, 203L, 198L, 194L, 204L), Al_Prod_WestEurope = c(304L, 
    297L, 306L, 306L, 298L, 307L), Al_Prod_EastCentralEurope = c(319L, 
    309L, 319L, 319L, 310L, 321L), Al_Prod_Oceania = c(178L, 
    174L, 175L, 166L, 160L, 165L), Al_Prod_GCC = c(418L, 412L, 
    427L, 426L, 413L, 426L), Al_Prod_ChinaEstimated = c(12, 15, 
    18, 22, 23, 24), Al_Prod_Total = c(4441L, 4419L, 4507L, 4553L, 
    4502L, 4619L), Al_Prod_DailyAvg = c(143.3, 147.3, 145.4, 
    146.9, 150.1, 149), almna_prod_AfricaAsiaExChina = c(395L, 
    445L, 459L, 436L, 413L, 395L), almna_prod_NorthAmerica = c(440L, 
    444L, 479L, 476L, 441L, 455L), almna_prod_SouthAmerica = c(1137L, 
    1077L, 1047L, 1063L, 1068L, 1097L), almna_prod_WestEurope = c(326L, 
    363L, 334L, 386L, 351L, 323L), almna_prod_EastCentralEurope = c(352L, 
    322L, 330L, 321L, 325L, 325L), almna_prod_Oceania = c(1696L, 
    1632L, 1663L, 1631L, 1579L, 1693L), almna_prod_ChinaEstimated = c(4513L, 
    4448L, 4509L, 4461L, 4416L, 4754L), almna_prod_Total = c(8859L, 
    8731L, 8821L, 8774L, 8593L, 9042L), almna_prod_DailyAverage = c(285.77, 
    291.03, 284.55, 283.03, 286.43, 291.68), TARGET = c(1749.1, 
    1834.4, 1945.41, 2030.23, 1992.48, 1938.2), lme_al_3month_price = c(1790.98, 
    1868.83, 1967.28, 2038.1, 2023.48, 1956.39), lme_al_stock = c(5271645, 
    5116815, 4990208, 4887148, 4706865, 4519988), Coal_Central_Appalachia_Price = c(60.7, 
    60.05, 57.25, 56.35, 54.59, 56.3), Coal_Northern_Apppalachia_Price = c(65.5, 
    64.5, 63.7, 62.75, 63.3, 65.55), Coal_Illinois_Basin_Price = c(46, 
    45.45, 44, 44, 43.4, 44.7), Coal_Powder_River_Price = c(13, 
    12.55, 12.25, 11.55, 11.25, 11.55), Coal_Uinta_Basin_Price = c(36.75, 
    36.75, 36.45, 36.45, 37, 37.75), BrentCrudePrice = c(109.21, 
    111.03, 104.94, 101.12, 94.67, 84.17)), class = c("data.table", 
"data.frame"), row.names = c(NA, -6L), .internal.selfref = <pointer: 0x00000000025f1ef0>)
4

2 に答える 2