6

次のような Qt3D メッシュを作成します。

Qt3DCore::QEntity *newEntity = new Qt3DCore::QEntity();
Qt3DExtras::QConeMesh *mesh =new Qt3DExtras::QConeMesh();
mesh->setTopRadius(0.2);
mesh->setBottomRadius(1.0);
mesh->setLength(2.0);
for(int i = 0; i < mesh->geometry()->attributes().size(); ++i) {
    mesh->geometry()->attributes().at(i)->buffer()->setSyncData(true); // To have access to data
}
newEntity->addComponent(mesh);

作成されたメッシュは次のようになります。

コーンメッシュ 円錐メッシュ、別のビュー


コードの後半で、上記のメッシュをSTL バイナリ形式でエクスポートしようとします。そのために、エンティティのジオメトリコンポーネントと変換コンポーネントを抽出します。

Qt3DCore::QComponent *compoMesh = nullptr; // place holder for mesh geometry of entity
Qt3DCore::QComponent *compoTran = nullptr; // place holder for mesh transformation of entity
QVector<Qt3DCore::QComponent *> compos = newEntity->components();
for(int i = 0; i < compos.size(); ++i) {
    if (qobject_cast<Qt3DRender::QGeometryRenderer *>(compos.at(i))) {
        compoMesh = compos.at(i); // mesh geometry component
    } else if (qobject_cast<Qt3DCore::QTransform *>(compos.at(i))) {
        compoTran = compos.at(i); // mesh transformation component
    }
}

次に、頂点の位置と法線を含むバッファー データを取得します。

Qt3DRender::QGeometryRenderer *mesh = qobject_cast<Qt3DRender::QGeometryRenderer *>(compoMesh);
Qt3DRender::QGeometry *geometry = mesh->geometry();
QVector<Qt3DRender::QAttribute *> atts = geometry->attributes();

ここで、頂点位置アトリビュートと頂点法線アトリビュートに注目します。それぞれのバイト オフセットバイト ストライドを取得し、両方が同じデータ バッファーを使用しているかどうかも確認します。

for(int i = 0; i < atts.size(); ++i) {
        if(atts.at(i)->name() == Qt3DRender::QAttribute::defaultPositionAttributeName()) {
            byteOffsetPos = atts.at(i)->byteOffset();
            byteStridePos = atts.at(i)->byteStride();
            bufferPtrPos = atts.at(i)->buffer();
        } else if(atts.at(i)->name() == Qt3DRender::QAttribute::defaultNormalAttributeName()) {
            byteOffsetNorm = atts.at(i)->byteOffset();
            byteStrideNorm = atts.at(i)->byteStride();
            bufferPtrNorm = atts.at(i)->buffer();
        }
    }
if(bufferPtrPos != bufferPtrNorm) {
    qDebug() << __func__ << "!!! Buffer pointer for position and normal are NOT the same";
    // Throw error here
    }

次に、バイト オフセットバイト ストライドを使用して三角形を抽出し、STL ファイルに書き込みます。ただし、エクスポートされた STL は適切ではありません。

エクスポートされた STL は良くありません


正常に動作するカスタム メッシュの STL をエクスポートするために同じコードを使用します。ただし、同じコードを使用して Qt3D の既製のメッシュをエクスポートするQConeMeshと、エクスポートされた STL は受け入れられません。誰でも私にヒントを与えることができますか?


アップデート

@vre が指摘したように、三角形を STL ファイルに書き込むための残りのコードを投稿します。これは大きなコードです。明確かつ簡潔にするために最善を尽くしています。

三角形の位置と法線を取得するために、属性をループして、VertexBufferすべての位置と法線を格納するバッファーを取得します。

// I loop over attributes to get access to VertexBuffer buffer
for(int i = 0; i < atts.size(); ++i) {
    Qt3DRender::QBuffer *buffer = atts.at(i)->buffer();
    QByteArray data = buffer->data();
    // We focus on VertexBuffer, NOT IndexBuffer!
    if( buffer->type() == Qt3DRender::QBuffer::VertexBuffer ) {
        // Number of triangles is number of vertices divided by 3:
        quint32 trianglesCount = atts.at(i)->count() / 3;

        // For each triangle, extract vertex positions and normals
        for(int j = 0; j < trianglesCount; ++j) {
            // Index for each triangle positions data
            // Each triangle has 3 vertices, hence 3 factor:
            // We already know byte-offset and byte-stride for positions
            int idxPos  = byteOffsetPos  + j * 3 * byteStridePos ;
            // Index for each triangle normals data
            // Each tirangle has 3 normals (right?), hence 3 factor:
            // We already know byte-offset and byte-stride for normals
            int idxNorm = byteOffsetNorm + j * 3 * byteStrideNorm;

            // Get x, y, z positions for 1st vertex
            // I have already checked that attribute base type is float by: `atts.at(i)->vertexBaseType();`
            QByteArray pos0x = data.mid(idxPos + 0 * sizeof(float), sizeof(float));
            QByteArray pos0y = data.mid(idxPos + 1 * sizeof(float), sizeof(float));
            QByteArray pos0z = data.mid(idxPos + 2 * sizeof(float), sizeof(float));

            // Get x, y z for 1st normal
            QByteArray norm0x= data.mid(idxNorm + 0 * sizeof(float), sizeof(float));
            QByteArray norm0y= data.mid(idxNorm + 1 * sizeof(float), sizeof(float));
            QByteArray norm0z= data.mid(idxNorm + 2 * sizeof(float), sizeof(float));

            // Get x, y, z positions for 2nd vertex
            QByteArray pos1x = data.mid(idxPos  + 1 * byteStridePos + 0 * sizeof(float), sizeof(float));
            QByteArray pos1y = data.mid(idxPos  + 1 * byteStridePos + 1 * sizeof(float), sizeof(float));
            QByteArray pos1z = data.mid(idxPos  + 1 * byteStridePos + 2 * sizeof(float), sizeof(float));

            // Get x, y, z for 2nd normal
            QByteArray norm1x= data.mid(idxNorm + 1 * byteStrideNorm + 0 * sizeof(float), sizeof(float));
            QByteArray norm1y= data.mid(idxNorm + 1 * byteStrideNorm + 1 * sizeof(float), sizeof(float));
            QByteArray norm1z= data.mid(idxNorm + 1 * byteStrideNorm + 2 * sizeof(float), sizeof(float));

            // Get x, y, z positions for 3rd vertex
            QByteArray pos2x = data.mid(idxPos  + 2 * byteStridePos + 0 * sizeof(float), sizeof(float));
            QByteArray pos2y = data.mid(idxPos  + 2 * byteStridePos + 1 * sizeof(float), sizeof(float));
            QByteArray pos2z = data.mid(idxPos  + 2 * byteStridePos + 2 * sizeof(float), sizeof(float));

            // Get x, y, z for 3rd normal
            QByteArray norm2x= data.mid(idxNorm + 2 * byteStrideNorm+ 0 * sizeof(float), sizeof(float));
            QByteArray norm2y= data.mid(idxNorm + 2 * byteStrideNorm+ 1 * sizeof(float), sizeof(float));
            QByteArray norm2z= data.mid(idxNorm + 2 * byteStrideNorm+ 2 * sizeof(float), sizeof(float));

            // Convert x, y, z byte arrays into floats
            float floatPos0x;
            if ( pos0x.size() >= sizeof(floatPos0x) ) {
                floatPos0x = *reinterpret_cast<const float *>( pos0x.data() );
            }
            float floatPos0y;
            if ( pos0y.size() >= sizeof(floatPos0y) ) {
                floatPos0y = *reinterpret_cast<const float *>( pos0y.data() );
            }
            float floatPos0z;
            if ( pos0z.size() >= sizeof(floatPos0z) ) {
                floatPos0z = *reinterpret_cast<const float *>( pos0z.data() );
            }

            // Do the rest of byte-array to float conversions:
            // norm0x=>floatNorm0x, norm0y=>floatNorm0y, norm0z=>floatNorm0z
            // pos1x=>floatPos1x, pos1y=>floatPos1y, pos1z=>floatPos1z
            // norm1x=>floatNorm1x, norm1y=>floatNorm1y, norm1z=>floatNorm1z
            // pos2x=>floatPos2x, pos2y=>floatPos2y, pos2z=>floatPos2z
            // norm2x=>floatNorm2x, norm2y=>floatNorm2y, norm2z=>floatNorm2z

            // Compose positions matrix before applying transformations
            // I'm going to use `QMatrix4x4` but I have 3 vertices of 3x1
            // Therefore I have to fill out `QMatrix4x4` with zeros and ones
            // Please see this question and its answer: https://stackoverflow.com/q/51979168/3405291
            QMatrix4x4 floatPos4x4 = QMatrix4x4(
                floatPos0x, floatPos1x, floatPos2x, 0,
                floatPos0y, floatPos1y, floatPos2y, 0,
                floatPos0z, floatPos1z, floatPos2z, 0,
                1         , 1         , 1         , 0
            );

            // Apply transformations to positions:
            // We already have transformations component `compoTran` from previous code:
            Qt3DCore::QTransform *tran = qobject_cast<Qt3DCore::QTransform *>(compoTran);
            QMatrix4x4 newFloatPos4x4 = tran->matrix() * floatPos4x4;

            // Get new positions after applying transformations:
            float newFloatPos0x = newFloatPos4x4(0,0);
            float newFloatPos0y = newFloatPos4x4(1,0);
            float newFloatPos0z = newFloatPos4x4(2,0);

            float newFloatPos1x = newFloatPos4x4(0,1);
            float newFloatPos1y = newFloatPos4x4(1,1);
            float newFloatPos1z = newFloatPos4x4(2,1);

            float newFloatPos2x = newFloatPos4x4(0,2);
            float newFloatPos2y = newFloatPos4x4(1,2);
            float newFloatPos2z = newFloatPos4x4(2,2);

            // Convert all the floats (after applying transformations) back to byte array:
            QByteArray newPos0x( reinterpret_cast<const char *>( &newFloatPos0x ), sizeof( newFloatPos0x ) );
            QByteArray newPos0y( reinterpret_cast<const char *>( &newFloatPos0y ), sizeof( newFloatPos0y ) );
            QByteArray newPos0z( reinterpret_cast<const char *>( &newFloatPos0z ), sizeof( newFloatPos0z ) );

            QByteArray newPos1x( reinterpret_cast<const char *>( &newFloatPos1x ), sizeof( newFloatPos1x ) );
            QByteArray newPos1y( reinterpret_cast<const char *>( &newFloatPos1y ), sizeof( newFloatPos1y ) );
            QByteArray newPos1z( reinterpret_cast<const char *>( &newFloatPos1z ), sizeof( newFloatPos1z ) );

            QByteArray newPos2x( reinterpret_cast<const char *>( &newFloatPos2x ), sizeof( newFloatPos2x ) );
            QByteArray newPos2y( reinterpret_cast<const char *>( &newFloatPos2y ), sizeof( newFloatPos2y ) );
            QByteArray newPos2z( reinterpret_cast<const char *>( &newFloatPos2z ), sizeof( newFloatPos2z ) );

            // Log triangle vertex positions and normals (float numbers)
            // A sample log is posted on this question on StackOverflow
            qDebug() << __func__ << " pos 0: x " << newFloatPos0x << " y " << newFloatPos0y << " z " << newFloatPos0z;
            qDebug() << __func__ << " pos 1: x " << newFloatPos1x << " y " << newFloatPos1y << " z " << newFloatPos1z;
            qDebug() << __func__ << " pos 2: x " << newFloatPos2x << " y " << newFloatPos2y << " z " << newFloatPos2z;

            qDebug() << __func__ << " norm 0: x " << floatNorm0x << " y " << floatNorm0y << " z " << floatNorm0z;
            qDebug() << __func__ << " norm 1: x " << floatNorm1x << " y " << floatNorm1y << " z " << floatNorm1z;
            qDebug() << __func__ << " norm 2: x " << floatNorm2x << " y " << floatNorm2y << " z " << floatNorm2z;

            // Write the triangle to STL file
            // Note that STL file needs a header which is written in another section of code
            // Note that STL file needs total number of triangles which is written in another section of code
            // Note that STL file needs only one normal vector for each triangle, but here we have 3 normals (for 3 vertices), therefore I'm writing only the 1st normal to STL (is it OK?!)
            // `baStl` is a byte-array containing all the STL data
            // `baStl` byte-array is written to a file in another section of the code
            QBuffer tempBuffer(&baStl);
            tempBuffer.open(QIODevice::Append);
            tempBuffer.write( norm0x   ); // vertex 0 Normal vector
            tempBuffer.write( norm0y   );
            tempBuffer.write( norm0z   );
            tempBuffer.write( newPos0x ); // New vertex 0 position
            tempBuffer.write( newPos0y );
            tempBuffer.write( newPos0z );
            tempBuffer.write( newPos1x ); // New vertex 1 position
            tempBuffer.write( newPos1y );
            tempBuffer.write( newPos1z );
            tempBuffer.write( newPos2x ); // New vertex 2 position
            tempBuffer.write( newPos2y );
            tempBuffer.write( newPos2z );
            tempBuffer.write("aa"); // Attribute byte count: UINT16: 2 bytes: content doesn't matter, just write 2 bytes
            tempBuffer.close();
        }
    }
}

上記のコードは、カスタム メッシュに最適です。つまり、STL ファイルを Qt3D アプリケーションにインポートしてから、STL として再度エクスポートすると、エクスポートされた STLは良好です。問題は、Qt3D のような既製のメッシュを作成するときQConeMeshに、エクスポートされた STLめちゃくちゃになることです。つまり、全体的なジオメトリは問題ありませんが、上の画像に示すように三角形がめちゃくちゃになります。

をエクスポートしようとすると、私のコードは次の値をログに記録しますQConeMesh。ご覧のとおり、法線ベクトルには単位サイズがあり、実際に法線であることを示しています。

...
exportStlUtil pos 0: x -10.6902 y -7.55854 z 4.76837e-07
exportStlUtil 位置 1: x -12.8579 y -4.31431 z 2.98023e-07
exportStlUtil 位置 2: x -13.6191 y -0.487476 z 5.96046e-08
exportStlUtil ノルム 0: x -0.707107 y 0 z 0.707107
exportStlUtil ノルム 1: x -0.92388 y 0 z 0.382683
exportStlUtil ノルム 2: x -1 y 0 z -8.74228e-08
exportStlUtil pos 0: x -12.8579 y 3.33936 z -1.19209e-07
exportStlUtil 位置 1: x -10.6902 y 6.58359 z -3.57628e-07
exportStlUtil 位置 2: x -7.44594 y 8.75132 z -4.76837e-07
exportStlUtil ノルム 0: x -0.92388 y 0 z -0.382683
exportStlUtil ノルム 1: x -0.707107 y 0 z -0.707107
exportStlUtil ノルム 2: x -0.382683 y 0 z -0.92388
exportStlUtil pos 0: x -3.61911 y 9.51252 z -4.76837e-07
exportStlUtil 位置 1: x 0.207723 y 8.75132 z -4.76837e-07
exportStlUtil 位置 2: x 3.45196 y 6.58359 z -3.57628e-07
exportStlUtil ノルム 0: x 1.19249e-08 y 0 z -1
exportStlUtil ノルム 1: x 0.382684 y 0 z -0.923879
exportStlUtil ノルム 2: x 0.707107 y 0 z -0.707107
exportStlUtil pos 0: x 5.61968 y 3.33936 z -1.19209e-07
exportStlUtil 位置 1: x 6.38089 y -0.487479 z 5.96046e-08
exportStlUtil 位置 2: x 6.38089 y -0.487477 z 0.133333
exportStlUtil ノルム 0: x 0.92388 y 0 z -0.382683
exportStlUtil ノルム 1: x 1 y 0 z 1.74846e-07
exportStlUtil ノルム 2: x 1 y 0 z 0
exportStlUtil 位置 0: x 5.61968 y -4.31431 z 0.133334
exportStlUtil 位置 1: x 3.45195 y -7.55854 z 0.133334
exportStlUtil 位置 2: x 0.207721 y -9.72627 z 0.133334
exportStlUtil ノルム 0: x 0.92388 y 0 z 0.382683
exportStlUtil ノルム 1: x 0.707107 y 0 z 0.707107
exportStlUtil ノルム 2: x 0.382683 y 0 z 0.92388
...
4

1 に答える 1