リラックスした単語移動距離を使用してテキストの類似性を計算したいと考えています。2 つの異なるデータセット (コーパス) があります。下記参照。
A <- data.frame(name = c(
"X-ray right leg arteries",
"consultation of gynecologist",
"x-ray leg arteries",
"x-ray leg with 20km distance",
"x-ray left hand"
), stringsAsFactors = F)
B <- data.frame(name = c(
"X-ray left leg arteries",
"consultation (inspection) of gynecalogist",
"MRI right leg arteries",
"X-ray right leg arteries with special care"
), stringsAsFactors = F)
Rでパッケージを使用しtext2vec
ています。何か間違っているようです。
library(text2vec)
library(stringr)
prep_fun = function(x) {
x %>%
# make text lower case
str_to_lower %>%
# remove non-alphanumeric symbols
str_replace_all("[^[:alnum:]]", " ") %>%
# collapse multiple spaces
str_replace_all("\\s+", " ")
}
両方のデータセットを組み合わせる
C = rbind(A, B)
C$name = prep_fun(C$name)
it = itoken(C$name, progressbar = FALSE)
v = create_vocabulary(it) %>% prune_vocabulary()
vectorizer = vocab_vectorizer(v)
ドキュメント用語マトリックス
dtm = create_dtm(it, vectorizer)
用語共起行列
tcm = create_tcm(it, vectorizer, skip_grams_window = 3)
手袋モデル
glove_model = GloVe$new(word_vectors_size = 10, vocabulary = v, x_max = 3)
wv = glove_model$fit_transform(tcm, n_iter = 10)
# get average of main and context vectors as proposed in GloVe paper
wv = wv + t(glove_model$components)
rwmd_model = RWMD$new(wv)
rwmd_dist = dist2(dtm[1:nrow(A), ], dtm[nrow(A)+1:nrow(C), ], method = rwmd_model, norm = 'none')
head(rwmd_dist)
[,1] [,2] [,3] [,4]
[1,] 0.1220713 0.7905035 0.3085216 0.4182328
[2,] 0.7043127 0.1883473 0.8031200 0.7038919
[3,] 0.1220713 0.7905035 0.3856520 0.4836772
[4,] 0.5340587 0.6259011 0.7146630 0.2513135
[5,] 0.3403019 0.5575993 0.7568583 0.5124514
望ましい出力:データフレームAの「婦人科医の診察」は、データフレームBの「婦人科医の診察(検査)」にマッピングする必要があります。同様に、データフレームAのテキストはデータフレームBのテキストと一致する必要があります.