3

サンプル 1 - レンガ サンプル 2 - 球体

ソーベル勾配の大きさと方向を計算しました。しかし、これをさらに形状検出に使用する方法にこだわっています。

画像>グレースケール>ソーベルフィルタリング>ソーベル勾配と方向の計算>次?

使用されるソーベル カーネルは次のとおりです。

Kx = ([[1, 0, -1],[2, 0, -2],[1, 0, -1]]) 
Ky = ([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])

(Numpy のみを使用し、言語 Python で他のライブラリを使用しないという制限があります。)

import numpy as np
def classify(im):

   #Convert to grayscale
   gray = convert_to_grayscale(im/255.)

   #Sobel kernels as numpy arrays

   Kx = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]]) 
   Ky = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])

   Gx = filter_2d(gray, Kx)
   Gy = filter_2d(gray, Ky)

   G = np.sqrt(Gx**2+Gy**2)
   G_direction = np.arctan2(Gy, Gx)

   #labels = ['brick', 'ball', 'cylinder']
   #Let's guess randomly! Maybe we'll get lucky.
   #random_integer = np.random.randint(low = 0, high = 3)

   return labels[random_integer]

def filter_2d(im, kernel):
   '''
   Filter an image by taking the dot product of each 
   image neighborhood with the kernel matrix.
   '''

    M = kernel.shape[0] 
    N = kernel.shape[1]
    H = im.shape[0]
    W = im.shape[1]

    filtered_image = np.zeros((H-M+1, W-N+1), dtype = 'float64')

    for i in range(filtered_image.shape[0]):
        for j in range(filtered_image.shape[1]):
            image_patch = im[i:i+M, j:j+N]
            filtered_image[i, j] = np.sum(np.multiply(image_patch, kernel))

    return filtered_image

def convert_to_grayscale(im):
    '''
    Convert color image to grayscale.
    '''
    return np.mean(im, axis = 2)
4

1 に答える 1