回帰データセットがあります:
X_train (float64) Size = (1616, 3) -> i.e. 3 predictors
Y_train (float64) Size = (1616, 2) -> i.e. 2 targets
Functional API を使用して Hyperas を実行してみました (私の主な目的は、loss_weights
コンパイル中にオプションを使用することです)。
inputs1 = Input(shape=(X_train.shape[0], X_train.shape[1]))
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(inputs1)
x = Dropout({{uniform(0, 1)}})(x)
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(x)
x = Dropout({{uniform(0, 1)}})(x)
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(x)
x = Dropout({{uniform(0, 1)}})(x)
if conditional({{choice(['three', 'four'])}}) == 'four':
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(x)
x = Dropout({{uniform(0, 1)}})(x)
output1 = Dense(1, activation='linear')(x)
output2 = Dense(1, activation='linear')(x)
model = Model(inputs = inputs1, outputs = [output1,output2])
adam = keras.optimizers.Adam(lr={{choice([10**-3,10**-2, 10**-1])}})
rmsprop = keras.optimizers.RMSprop(lr={{choice([10**-3,10**-2, 10**-1])}})
sgd = keras.optimizers.SGD(lr={{choice([10**-3,10**-2, 10**-1])}})
choiceval = {{choice(['adam', 'rmsprop','sgd'])}}
if choiceval == 'adam':
optimizer = adam
elif choiceval == 'rmsprop':
optimizer = rmsprop
else:
optimizer = sgd
model.compile(loss='mae', metrics=['mae'],optimizer=optimizer, loss_weights=[0.5,0.5])
earlyStopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=50, verbose=0, mode='auto')
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=2, save_best_only=True, mode='max')
lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.5, cooldown=1, patience=10, min_lr=1e-4,verbose=2)
callbacks_list = [earlyStopping, checkpoint, lr_reducer]
history = model.fit(X_train, Y_train,
batch_size={{choice([16,32,64,128])}},
epochs={{choice([20000])}},
verbose=2,
validation_data=(X_val, Y_val),
callbacks=callbacks_list)
ただし、実行すると、次のエラーが発生します。
ValueError: Error when checking input: expected input_1 to have 3 dimensions, but got array with shape (1616, 3)
誰かがここで何がうまくいかないのかを教えていただければ幸いです。入力 (つまりX_train
、Y_train
) と入力形状に問題がある可能性があります。ここで何か助けていただければ幸いです。
アップデート
わかりました、確かに障害は入力ラインにありました:
に変更しました: inputs1 = Input(shape=(X_train.shape[1],))
。
ただし、別のエラーを受け取りました。
ValueError: Error when checking model target: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s), but instead got the following list of 1 arrays: [array([[0.19204772, 0.04878049],
[0.20226056, 0. ],
[0.12029842, 0.04878049],
...,
[0.45188627, 0.14634146],
[0.26942276, 0.02439024],
[0.12942418, 0....