print(news['title'][5])
マグニチュード 7.5 の地震がペルーとエクアドルの国境地域を襲う
print(analyser.polarity_scores(news['title'][5]))
{'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
ポジティブ: [] ニュートラル: ['Magnitude', '7.5', 'quake', 'his', 'Peru-Ecuador', 'border', 'region', '-', 'The', 'Hindu'] ネガティブ: []
スコア: {'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}
new_words = {
'Peru-Ecuador': -2.0,
'quake': -3.4,
}
analyser.lexicon.update(new_words)
print(analyzer.polarity_scores(sentence))
{'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
ポジティブ: [] ニュートラル: ['Magnitude', '7.5', 'quake', 'his', 'Peru-Ecuador', 'border', 'region', '-', 'The', 'Hindu'] ネガティブ: []
スコア: {'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}