Python-pydicom モジュールを使用して、患者のサンプルを読み込みます。
def load_data(sample):
data=dict()
# dcms data
dcms_data=dict()
for dcm_file in sample['dcm_files']: # 遍历读取数据
ds = pydicom.dcmread(dcm_file)
array = ds.pixel_array
origin = ds.ImagePositionPatient # 网格原点在世界坐标系的位置
spacing = ds.PixelSpacing # 采样间隔
uid = ds.SOPInstanceUID
dcms_data[uid] = {'dcmSpacing': spacing, 'dcmOrigin': origin, 'array': array}
data['dcms_data']=dcms_data
# rt data
rt_data = dict() # 以{RUID:label_data}形式返回结果
ds = pydicom.dcmread(sample['rt_file'])
sequences = ds.ROIContourSequence[0].ContourSequence
for sequence in sequences:
ruid = sequence.ContourImageSequence[0].ReferencedSOPInstanceUID
array = sequence.ContourData
num = sequence.NumberOfContourPoints
rt_data[ruid] = {'pointNumber': num, 'array': array}
data['rt_data']=rt_data
# 返回结果
return data
次に、DICOM-RT 構造体の輪郭データを画像座標に変換します。
def convert_global_aix_to_net_pos(data):
point_data = {} # 返回坐标{uid:data}
for uid, value in data['rt_data'].items():
num = value['pointNumber']
label_data = value['array']
dcm_origin = data['dcms_data'][uid]['dcmOrigin']
dcm_spacing = data['dcms_data'][uid]['dcmSpacing']
point = [] # 坐标[(x1,y1),(...),...]
for i in range(0,num,3):
x = label_data[i] # 轮廓世界坐标系
y = label_data[i + 1]
X = int(float(x) - float(dcm_origin[0]) / float(dcm_spacing[0])) # 轮廓X坐标
Y = int(float(y) - float(dcm_origin[1]) / float(dcm_spacing[1])) # 轮廓Y坐标
point.append((X, Y))
point_data[uid] = point
return point_data
ただし、dicom ファイルでこの関数をテストすると、間違ったポイント データ (負のデータ) が返されることがわかりました。
DICOM-RT Struct の等高線データを画像座標に変換する方法が間違っていると思いますが、別の方法が見つかりません。私の方法は間違っていますか?またはどうすれば実装できますか?前もって感謝します。