4

Python で新しい線形最適化コードをセットアップしています。残念ながら、Pulp、Scipy、および Gekko パッケージでは同じ結果が得られません。

Python で線形最適化のさまざまなパッケージを使用してコードを実装しようとしました。

GEKKO による最適化

from gekko import GEKKO 
import numpy as np
import matplotlib.pyplot as plt

m = GEKKO()             # create GEKKO model
x = m.Var(value=0, lb=0, ub=400000)      # define new variable, initial     value=0
y = m.Var(value=0, lb=0, ub=200)      # define new variable, initial value=1
z = m.Var(value=0, lb=0)

m.Equation(x+y+z==100)
m.Obj(1.2*x + y + z) # equations
m.solve(disp=False)     # solve

print("Solution with The GEKKO package")
print(x.value, y.value , z.value)# # print solution

Scipy による最適化

import numpy as np
from scipy.optimize import minimize

def objective(m):
    x = m[0]
    y = m[1]
    z = m[2]
    return 1.2*x + y + z


def constraint1(m):
    return m[0] + m[1] + m[2] - 100

def constraint2(x):
    return x[2]

x0 = [0,0,0]
b1 = (0,400000)
b2 = (0,200)
b3= (0,None)
bnds = (b1,b2,b3)

con1 = {'type' : 'eq', 'fun' : constraint1}
con2 = {'type' : 'ineq', 'fun' : constraint2}
cons = [con1,con2]

sol = minimize(objective,x0,method='SLSQP', bounds=bnds , constraints=cons)

print("Solution with The SCIPY package")
print(sol)

パルプによる最適化

from pulp import *

prob = LpProblem("Problem",LpMinimize)

x = LpVariable("X",0,400000,LpContinuous)
y = LpVariable("Y",0,200,LpContinuous)
z = LpVariable("Z",0,None,LpContinuous)

prob += 1.2*x + y + z
prob += (x + y + z == 100)
prob.solve()

print("Solution with The PULP package")
print("Status:", LpStatus[prob.status])

for v in prob.variables():
    print(v.name, "=", v.varValue)

私は同じ結果を期待していますが、実際の出力は残念ながら異なります:

GEKKO パッケージによるソリューション

[0.0] [36.210291349] [63.789708661]

SCIPY パッケージによるソリューション

fun: 100.0000000000001
jac: array([1.19999981, 1.        , 1.        ]) 
message: 'Optimization terminated successfully.'
nfev: 35
nit: 7
njev: 7
status: 0
success: True
x: array([4.88498131e-13, 5.00000000e+01, 5.00000000e+01])

PULP パッケージによるソリューション

X = 0.0
Y = 100.0
Z = 0.0
4

1 に答える 1