Python api を使用して、サンゴ アクセラレータで matmul を実行する .tflite モデルを呼び出す方法がわかりません。
.tflite モデルは、こちらのサンプル コードから生成されます。tf.lite.Interpreter() クラスを使用するとうまく動作しますが、edgetpu クラスで動作するように変換する方法がわかりません。モデルのデータ型を numpy.float32 から numpy.uint8 に変更して edgetpu.basic.basic_engine.BasicEngine() を試しましたが、役に立ちませんでした。私は TensorFlow の完全な初心者で、tpu を matmul に使用したいだけです。
import numpy
import tensorflow as tf
import edgetpu
from edgetpu.basic.basic_engine import BasicEngine
def export_tflite_from_session(session, input_nodes, output_nodes, tflite_filename):
print("Converting to tflite...")
converter = tf.lite.TFLiteConverter.from_session(session, input_nodes, output_nodes)
tflite_model = converter.convert()
with open(tflite_filename, "wb") as f:
f.write(tflite_model)
print("Converted %s." % tflite_filename)
#This does matmul just fine but does not use the TPU
def test_tflite_model(tflite_filename, examples):
print("Loading TFLite interpreter for %s..." % tflite_filename)
interpreter = tf.lite.Interpreter(model_path=tflite_filename)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print("input details: %s" % input_details)
print("output details: %s" % output_details)
for i, input_tensor in enumerate(input_details):
interpreter.set_tensor(input_tensor['index'], examples[i])
interpreter.invoke()
model_output = []
for i, output_tensor in enumerate(output_details):
model_output.append(interpreter.get_tensor(output_tensor['index']))
return model_output
#this should use the TPU, but I don't know how to run the model or if it needs
#further processing. One matrix can be constant for my use case
def test_tpu(tflite_filename,examples):
print("Loading TFLite interpreter for %s..." % tflite_filename)
#TODO edgetpu.basic
interpreter = BasicEngine(tflite_filename)
interpreter.allocate_tensors()#does not work...
def main():
tflite_filename = "model.tflite"
shape_a = (2, 2)
shape_b = (2, 2)
a = tf.placeholder(dtype=tf.float32, shape=shape_a, name="A")
b = tf.placeholder(dtype=tf.float32, shape=shape_b, name="B")
c = tf.matmul(a, b, name="output")
numpy.random.seed(1234)
a_ = numpy.random.rand(*shape_a).astype(numpy.float32)
b_ = numpy.random.rand(*shape_b).astype(numpy.float32)
with tf.Session() as session:
session_output = session.run(c, feed_dict={a: a_, b: b_})
export_tflite_from_session(session, [a, b], [c], tflite_filename)
tflite_output = test_tflite_model(tflite_filename, [a_, b_])
tflite_output = tflite_output[0]
#test the TPU
tflite_output = test_tpu(tflite_filename, [a_, b_])
print("Input example:")
print(a_)
print(a_.shape)
print(b_)
print(b_.shape)
print("Session output:")
print(session_output)
print(session_output.shape)
print("TFLite output:")
print(tflite_output)
print(tflite_output.shape)
print(numpy.allclose(session_output, tflite_output))
if __name__ == '__main__':
main()