代わりにこれを math stackexchange に置くべきかどうかはわかりませんが、まあまあです。
CLRS の 300 ページに...
Theorem 12.4
The expected height of a randomly built binary search tree on n distinct keys is O(lgn).
彼らは3つの確率変数を定義しています...
'Xn' is the height of a randomly built binary search on n keys.
'Yn' is the "exponential height", where Yn = 2^(Xn)
'Rn' is the position that the root key would occupy if the key's were sorted, its rank.
そして指標確率変数Zn,1 Zn,2 Zn,3 ... Zn,n
...
'Zn,i = I{Rn = i}'
そこで彼らは証明を続けますが(テキストを参照)、その途中で次の主張をします...
We claim that the indicator random variable Zn,i = I{Rn = i} is independent of the
values of Yi-1 and Yn-i. Having chosen Rn = i, the left subtree (whose exponential
height is Yi-1) is randomly built on the i-1 keys whose ranks are less than i. This
subtree is just like any other randomly built binary search tree on i-1 keys.
Other than the number of keys it contains, this subtree's structure is not affected
at all by the choice of Rn = i, and hence the random variables Yi-1 and Zn,i are
independent.
Yn-iも同様。私の問題はその部分です。含まれるキーの数以外...はい、サブツリーの構造はRnの影響を受けませんが、Rnがサブツリー内のキーの数に影響を与えるという事実は、サブツリーの高さを制限します。
私は明らかにいくつかの重要な関係を欠いています。どんな助けでも大歓迎です、ありがとう。