2

マーチャント NPC を使用した RPG/マッド ゲームを設計しており、需要と供給に基づいて価格を動的に調整したいと考えています。

私がすでに理解していること:

  • 複雑な「現実的な」システムは必要ありませんが、統計データに基づく単純な乗数だけが必要です
  • 私は、アルゴリズムが乱用やプレイヤー人口の少ないサイズに耐えられるようにしたいので、乗数はおそらく動的に生成されるべきではなく、他のマーチャントデータとともに保存され、数日に1回更新されるべきです
  • したがって、必要な統計データは少量である必要があります。多くの NPC が存在し、それぞれに独自のアイテム リスト、価格、および統計情報があります。そのため、ゲームの世界の発展に伴ってサイズが急速に大きくなる可能性があります。

問題は次のとおりです。この種の乗数に「最適な」式はどのようなものでしょうか?

免責事項:

  • これは需給モデリングに関連しているように見えるかもしれませんが、ライブラリは必要ありません。自分で行う方法に関するいくつかのヒントです。
  • この問題をシミュレートする経済モデルがすでに存在する可能性があることは承知していますが、私は経済学を勉強したことがないので、何を探すべきかさえわかりません。
  • いいえ、これは宿題ではありませんが、おそらく宿題のように聞こえるので、タグを追加します:P
4

1 に答える 1

4

私は経済学を学んだゲーム開発者なので、エコノミストの両手で答えられます。

一方では、式が非常に単純な経済学があります。Google で検索するか、任意のエコブックの第 1 章を参照してください。この式を使用することもできますが、経済学は個人の行動に関するものであるため、人間の意思決定の複雑さを無視し、単に最大化と呼んでいます (最大化されているものをここに入力してください)。これは、プレーヤーが唯一のプロデューサー/コンシューマーでない限り、非常に単純な式を使用するには、非常に複雑な AI を実装する必要があることを意味します。シミュレーションを構築していない限り、これは良い方法ではありません。

一方、あなたは本当に楽しいことを気にかけています。したがって、実数に近い公式はまったく問題ありません。線関数になるように線形分布を使用し、操作する変数は勾配と Y です。曲線関数を使用し、操作する指数を追加します。これらをデータファイルに入れて、楽しくなるまで遊んでください。あなたが楽しくなれば、それが正しくないことに気付く人はほとんどいないでしょう。

アイテムの基本コストを想定することから始めます。これは異常な供給または需要であってはなりません。合理的な在庫を決定します。この在庫は、1 つのショップで入手可能な量である必要はありませんが、一般的に入手可能な量です。次に、これらのうちの 1 つだけに支払う最大額を決定します。繰り返しますが、これはただ楽しくするためです。x 軸に利用可能、Y 軸にコストを取り、勾配を計算します。

剣はかなり広く入手できるので、いつでも 5 ゴールドで 10 を入手できるとしましょう。ここで、1 しかなければ 20 を超える金額を支払う人はいないとしましょう。10, 5 と 1, 20 の 2 つの点があります。線が y=0 を超えると、商人はもはや剣を購入しなくなります。

線形の「曲線」は、経済学ではかなり一般的です。プロットされたときの有名なラッファー曲線のようなほとんどの曲線は、実際にはほぼ平坦です。

于 2011-04-19T12:03:14.080 に答える