Haskell でNegamaxアルゴリズムを実装しようとしています。
このために、私はゲームが取り得る将来の可能性をバラの木 ( Data.Tree.Forest (depth, move, position)
) で表しています。ただし、多くの場合、2 つの異なる一連の移動で到達できる位置があります。繰り返される位置 (のサブツリー) を再評価するのは無駄です (そしてすぐに非常に遅くなります)。
これが私がこれまでに試したことです:
Tying the Knotのバリアントを実装して、共通のサブ結果を共有します。ただし、(潜在的に無限の)リストの結び目を結ぶことについての説明しか見つけることができず、サブツリーの再利用については何も見つかりませんでした。
私が検討した別のアプローチは、
State
モナド内にツリーを構築することでした。保持する状態は、Map (depth, position) (Forest (depth, move, position))
明示的なメモ化を実行することですが、これも適切に設定できていません。
どちらのアプローチにも、コアカーシブな方法でしかゲーム ツリーを構築できないという問題があると思います。リーフからルートまでツリーを構築するのではなく、ルートから下に向かって (潜在的に無限の) ツリーを遅延して構築します。
編集:私が現在使用しているコードの例を示すには(遅すぎます):
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
module ZeroSumGame where
import qualified Control.Arrow
import Data.Tree
import Numeric.Natural (Natural)
(|>) :: a -> (a -> b) -> b
x |> f = f x
infixl 0 |>
{-# INLINE (|>) #-}
class Ord s => Game s where
data Move s
initial :: s -- | Beginning of the game
applyMove :: Natural -> s -> Move s -> s -- | Moving from one game state to the next
possibleMoves :: Natural -> s -> [Move s] -- | Lists moves the current player is able to do.
isGameOver :: s -> Bool -- | True if the game has ended. TODO: Maybe write default implementation using `possibleMoves state == []`?
scorePosition :: Natural -> Move s -> s -> Int -- | Turns a position in an integer, for the Negamax algorithm to decide which position is the best.
type Trimove state = (Natural, Move state, state) -- | Depth since start of game, move to next position, new position
gameforest :: Game s => Natural -> s -> Forest (Trimove s)
gameforest start_depth start_state = unfoldForest buildNode (nextpositions start_depth start_state)
where
buildNode (depth, move, current_state) =
if
isGameOver current_state
then
((depth, move, current_state), [])
else
((depth, move, current_state), nextpositions depth current_state)
nextpositions depth current_state =
current_state
|> possibleMoves depth
|> fmap (\move -> (succ depth, move, applyMove depth current_state move))
scoreTree :: Game s => Ord (Move s) => Natural -> Tree (Trimove s) -> (Move s, Int)
scoreTree depth node =
case (depth, subForest node) of
(0, _) ->
node |> rootLabel |> uncurry3dropFirst scorePosition
(_, []) ->
node |> rootLabel |> uncurry3dropFirst scorePosition
(_, children) ->
children
|> scoreForest (pred depth)
|> map (Control.Arrow.second negate)
|> maximum
uncurry3dropFirst :: (a -> b -> c -> d) -> (a, b, c) -> (b, d)
uncurry3dropFirst fun (a, b, c) = (b, fun a b c)
scoreForest :: Game s => Ord (Move s) => Natural -> Forest (Trimove s) -> [(Move s, Int)]
scoreForest depth forest =
forest
|> fmap (scoreTree depth)
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
module TicTacToe where
import qualified Control.Monad.State
import Control.Monad.State (State)
import qualified Data.Map
import Data.Map (Map)
import qualified Control.Arrow
import Data.Tree
import Data.Array (Array)
import qualified Data.Array
import qualified Data.Maybe
import qualified Data.Foldable
import Numeric.Natural (Natural)
import ZeroSumGame
data CurrentPlayer = First | Second
deriving (Eq, Ord, Show)
instance Enum CurrentPlayer where
fromEnum First = 1
fromEnum Second = -1
toEnum 1 = First
toEnum (-1) = Second
toEnum _ = error "Improper player"
newtype TicTacToe = TicTacToe (Array (Int, Int) (Maybe CurrentPlayer))
deriving (Eq, Ord)
instance Game TicTacToe where
data Move TicTacToe = TicTacToeMove (Int, Int)
deriving (Eq, Ord, Show, Bounded)
initial = TicTacToe initialTicTacToeBoard
possibleMoves _depth = possibleTicTacToeMoves
applyMove depth (TicTacToe board) (TicTacToeMove (x, y)) =
TicTacToe newboard
where
newboard = board Data.Array.// [((x, y), Just player)]
player = case depth `mod` 2 of
0 -> First
_ -> Second
isGameOver state = Data.Maybe.isJust (findFilledLines state)
scorePosition _ _ state =
state
|> findFilledLines
|> fmap fromEnum
|> Data.Maybe.fromMaybe 0
|> (* (-10000))
findFilledLines :: TicTacToe -> Maybe CurrentPlayer
findFilledLines (TicTacToe board) =
(rows ++ columns ++ diagonals)
|> map winner
|> Data.Foldable.asum
where
rows = vals rows_indexes
columns = vals columns_indexes
diagonals = vals diagonals_indexes
rows_indexes = [[(i, j) | i <- [0..2]]| j <- [0..2]]
columns_indexes = [[(i, j) | j <- [0..2]]| i <- [0..2]]
diagonals_indexes = [[(i, i) ]| i <- [0..2]] ++ [[(i, 2 - i) ]| i <- [0..2]]
vals = map (map (\index -> board Data.Array.! index))
winner :: Eq a => [Maybe a] -> Maybe a
winner [x,y,z] =
if x == y && x == z then x else Nothing
winner _ = Nothing
initialTicTacToeBoard :: (Array (Int, Int) (Maybe CurrentPlayer))
initialTicTacToeBoard =
Data.Array.array ((0, 0), (2, 2)) [((i, j), Nothing) | i <- [0..2], j <- [0..2]]
possibleTicTacToeMoves :: TicTacToe -> [Move TicTacToe]
possibleTicTacToeMoves (TicTacToe board) = foldr checkSquareForMove [] (Data.Array.assocs board)
where
checkSquareForMove (index, val) acc = case val of
Nothing -> TicTacToeMove index : acc
Just _ -> acc
printBoard :: TicTacToe -> String
printBoard (TicTacToe board) =
unlines [unwords [showTile (board Data.Array.! (y, x)) | x <- [0..2]] | y <- [0..2]]
where
showTile loc =
case loc of
Nothing -> " "
Just Second -> "X"
Just First -> "O"
( TypeFamilies は、各Game
実装が独自の a の概念を持つことを可能にするために使用され、その後、 FlexibleContexts は実装するMove
ために強制する必要があります。Move s
Ord