答えは非常に明白だと思いますが、現時点ではわかりません。
レコード配列を通常の ndarray に戻すにはどうすればよいですか?
次の単純な構造化配列があるとします。
x = np.array([(1.0, 4.0,), (2.0, -1.0)], dtype=[('f0', '<f8'), ('f1', '<f8')])
次に、次のように変換します。
array([[ 1., 4.],
[ 2., -1.]])
asarray
とを試しastype
ましたが、うまくいきませんでした。
更新 (解決: float64 (f8) の代わりに float32 (f4))
OK、Robert ( x.view(np.float64).reshape(x.shape + (-1,))
) の解決策を試してみましたが、単純な配列で完全に機能します。しかし、変換したい配列を使用すると、奇妙な結果が得られます。
data = np.array([ (0.014793682843446732, 0.006681123282760382, 0.0, 0.0, 0.0, 0.0008984912419691682, 0.0, 0.013475529849529266, 0.0, 0.0),
(0.014793682843446732, 0.006681123282760382, 0.0, 0.0, 0.0, 0.0008984912419691682, 0.0, 0.013475529849529266, 0.0, 0.0),
(0.014776384457945824, 0.006656022742390633, 0.0, 0.0, 0.0, 0.0008901208057068288, 0.0, 0.013350814580917358, 0.0, 0.0),
(0.011928378604352474, 0.002819152781739831, 0.0, 0.0, 0.0, 0.0012627150863409042, 0.0, 0.018906937912106514, 0.0, 0.0),
(0.011928378604352474, 0.002819152781739831, 0.0, 0.0, 0.0, 0.001259754877537489, 0.0, 0.01886274479329586, 0.0, 0.0),
(0.011969991959631443, 0.0028706740122288465, 0.0, 0.0, 0.0, 0.0007433745195157826, 0.0, 0.011164642870426178, 0.0, 0.0)],
dtype=[('a_soil', '<f4'), ('b_soil', '<f4'), ('Ea_V', '<f4'), ('Kcc', '<f4'), ('Koc', '<f4'), ('Lmax', '<f4'), ('malfarquhar', '<f4'), ('MRN', '<f4'), ('TCc', '<f4'), ('Vcmax_3', '<f4')])
その後:
data_array = data.view(np.float).reshape(data.shape + (-1,))
与えます:
In [8]: data_array
Out[8]:
array([[ 2.28080997e-20, 0.00000000e+00, 2.78023241e-27,
6.24133580e-18, 0.00000000e+00],
[ 2.28080997e-20, 0.00000000e+00, 2.78023241e-27,
6.24133580e-18, 0.00000000e+00],
[ 2.21114197e-20, 0.00000000e+00, 2.55866881e-27,
5.79825816e-18, 0.00000000e+00],
[ 2.04776835e-23, 0.00000000e+00, 3.47457730e-26,
9.32782857e-17, 0.00000000e+00],
[ 2.04776835e-23, 0.00000000e+00, 3.41189244e-26,
9.20222417e-17, 0.00000000e+00],
[ 2.32706550e-23, 0.00000000e+00, 4.76375305e-28,
1.24257748e-18, 0.00000000e+00]])
これは、他の数値と別の形状の配列です。私は何を間違えましたか?