2

バランスがとれていることを確認するために、作成した二分探索木を変更する必要があります。私の指示に従って、add メソッドと remove メソッドを変更するだけです。これが私が現在持っているものです:

package proj;

public class BinarySearchTree<T extends Comparable<T>>{
    public static void main(String[] args) {
        BinarySearchTree<Integer> tree = new BinarySearchTree<Integer>();
        tree.add(5);
        tree.add(1);
        tree.add(2);
        tree.add(6);
    }

    private Node<T> root;
    private int size;
    String inorder = "";
    String preorder = "";

    public BinarySearchTree(){
        root = null;
        size = 0;
    }

    //adds a new item to the queue
    public void add(T obj) {
        Node<T> n = new Node<T>(obj);
        if( root == null ) {
            root = n;
        } else {
            add( root, n );
        }
        size++;
    }

    private void add(Node<T> subtree, Node<T> n) {
        if( subtree.getValue().compareTo(n.getValue()) > 0 ) {
            if( subtree.getLeftChild() == null ) {
                subtree.setLeftChild(n);
                n.setParent(subtree);
            } else {
                add( subtree.getLeftChild(), n );
            }
        } else {
            if( subtree.getRightChild() == null ) {
                subtree.setRightChild(n);
                n.setParent(subtree);
            } else {
                add( subtree.getRightChild(), n );
            }
        }
    }

    //returns the head of the queue
    public T peek(){
        Node<T> current = root;
        while(current.getLeftChild() != null){
            current = current.getLeftChild();
        }
        return current.getValue();
    }

    //removes the head of the queue and returns it
    public T remove(){
        if(root == null){
            return null;
        }

        Node<T> current = root;
        while(current.getLeftChild() != null){
            current = current.getLeftChild();
        }
        if( current.getParent() == null ) {
            root = current.getRightChild();
            if(root != null){
                root.setParent(null);
            }
        } else {
            current.getParent().setLeftChild(current.getRightChild());
            if(current.getRightChild() != null){
                current.getRightChild().setParent(current.getParent());
            }
        }
        size--;
        return current.getValue();
    }

    //returns the position of an element in the queue, or -1 if it is not found
    public int search(T searchItem){
        String tempOrdered = inorder(root);
        for(int i = 0; i<tempOrdered.length(); i++){
            if(String.valueOf(tempOrdered.charAt(i)).equals(searchItem.toString())){
                return i;
            }
        }
        return -1;
    }

    //returns number of nodes in the tree
    //returns the total number of elements in the queue
    public int getSize(){
        return size;
    }
    public String inorder() {
        inorder = "";
        if( root == null )
            return inorder;
        return inorder(root);
    }

    //returns an in-order, comma-separated string of every element in the queue
    private String inorder(Node<T> n){
        if(n.getLeftChild() != null){
            inorder(n.getLeftChild());
        }
        inorder += n.getValue();
        if(n.getRightChild() != null){
            inorder(n.getRightChild());
        }
        return inorder;
    }

    public String preorder() {
        preorder = "";
        if( root == null )
            return preorder;
        return preorder(root);
    }

    //returns a pre-ordered, comma-separated string of every element in the queue
    private String preorder(Node<T> n){
        preorder+= n.getValue();
        if(n.getLeftChild() != null){
            preorder(n.getLeftChild());
        }
        if(n.getRightChild() != null){
            preorder(n.getRightChild());
        }

        return preorder;
    }

    //returns the height of the tree; returns -1 if the tree is empty
    public int height(Node<T> n){
        if(n == null){
            return -1;
        }
        return Math.max(height(n.getLeftChild()), height(n.getRightChild()))+ 1;
    }

    //returns the root node
    public Node<T> getRoot(){
        return root;
    }
}

私はこの課題を順を追って説明してくれる人を探しているわけではありません。コードを途中で壊さないように、これをどのように行うべきかについてのアドバイスを探しているだけです。何かが追加または削除されるたびにツリーのバランス係数をチェックする効果を得るために何かを行い、ツリーを再構築するか、バランスが取れていない場合は「回転」します。

事前にアドバイスをいただきありがとうございます。:) すべてのヒントに感謝します。

-クリス

4

1 に答える 1

1

ウィキペディアのAVL ツリーの記事には、この種の自己バランス ツリーを実装するために必要なすべての情報が記載されています (リバランスに必要な回転を示す図が特に気に入っています)。基本的に、左右のツリー ローテーションを実装し、この記事に記載されているルールに従ってメソッドaddとメソッドで使用する必要があります。remove

もっと冒険好きなら、赤黒木を実装してみてください。疑似コードによる適切な説明は、Introduction to Algorithms にあります。

于 2011-06-02T16:56:08.183 に答える