私は、いくつかの異なる SKLearn、HDBScan、およびカスタム外れ値検出クラスを利用して、集合した外れ値情報を調べようとしています。ただし、何らかの理由で、HDBScan を使用するクラスを反復処理できないというエラーが一貫して発生しています。他のすべての Sklearn および Custom クラスは可能です。私が得ている問題は、HDBScan クラスの 2 番目のパスで一貫して発生しているようで、algorithm.fit(tmp) で即座に発生します。スクリプトをデバッグすると、クラスの最初の行に到達する前にエラーがスローされたように見えます。
何か助けはありますか?以下は、最小限の実行可能な再現です。
import numpy as np
import pandas as pd
import hdbscan
from sklearn.datasets import make_blobs
from sklearn.svm import OneClassSVM
from sklearn.ensemble import IsolationForest
from sklearn.covariance import EllipticEnvelope
class DBClass():
def __init__(self, random = None):
self.random = random
def fit(self, data):
self.train_data = data
cluster = hdbscan.HDBSCAN()
cluster.fit(self.train_data)
self.fit = cluster
def predict(self, data):
self.predict_data = data
if self.train_data.equals(self.predict_data):
return self.fit.probabilities_
def OutlierEnsemble(df, anomaly_algorithms = None, num_slices = 5, num_columns = 7, outliers_fraction = 0.05):
if isinstance(df, np.ndarray):
df = pd.DataFrame(df)
assert isinstance(df, pd.DataFrame)
if not anomaly_algorithms:
anomaly_algorithms = [
("Robust covariance",
EllipticEnvelope(contamination=outliers_fraction)),
("One-Class SVM",
OneClassSVM(nu=outliers_fraction,
kernel="rbf")),
("Isolation Forest",
IsolationForest(contamination=outliers_fraction)),
("HDBScan LOF",
DBClass()),
]
data = []
for i in range(1, num_slices + 1):
data.append(df.sample(n = num_columns, axis = 1, replace = False))
predictions = []
names = []
for tmp in data:
counter = 0
for name, algorithm in anomaly_algorithms:
algorithm.fit(tmp)
predictions.append(algorithm.predict(tmp))
counter += 1
names.append(f"{name}{counter}")
return predictions
blobs, labels = make_blobs(n_samples=3000, n_features=12)
OutlierEnsemble(blobs)
提供されたエラーは、最も役に立ちません。
Traceback (most recent call last):
File "<ipython-input-4-e1d4b63cfccd>", line 75, in <module>
OutlierEnsemble(blobs)
File "<ipython-input-4-e1d4b63cfccd>", line 66, in OutlierEnsemble
algorithm.fit(tmp)
TypeError: 'HDBSCAN' object is not callable