1

私は HAL を使用して STM32CubeIDE で STM32F767 に取り組んでいます (ベア メタルを完全に学習する時間がありません。空き時間に行っています)。TIM2 を CH1 と CH2 の両方で PWM としてセットアップし、周期は 200us、デューティ サイクルは CH1 で 25%、約 1.5% です。CH2 は 30%。ADC1 も 1.8 Msps に設定しています。私が望むのは、ADCがトリガーするPWM CH2の立ち上がりエッジで、DMAが50サンプル(または最終的に決定するバッファサイズ。現在は50)を読み取り、次にADC / DMAが次の立ち上がりまで待機することですPWM CH2 のエッジで ADC/DMA をさらに 50 サンプルトリガします。簡単に言えば、PWM CH2 が立ち上がるたびに、サイズ 50 の ADC バッファが満たされるようにします。今、私はすでに割り込みとポーリングでこれを達成していますが、CPUを可能な限り除外したいと考えています。

問題: ボードのリセット直後に PWM CH2 の最初の立ち上がりエッジで ADC がアクティブになると、ADC は信号の変換を永久に実行し、DMA はバッファを更新します。PWMがADCを常にトリガーするか、DMAがADCを1回だけトリガーしてから永久に実行しないようにします。

主要:

volatile uint16_t ADC_Val[50];// = {0};
volatile uint16_t ADC_Total[250] = {0};

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_TIM2_Init();
  /* USER CODE BEGIN 2 */
  HAL_ADC_Start_DMA(&hadc1, ADC_Val, sizeof(ADC_Val));
  HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
  HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2);


  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

参照用に GPIO を切り替えるセットアップと変換完了のコールバック:

static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) 
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_CC2;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. 
  */
  sConfig.Channel = ADC_CHANNEL_3;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 0;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 20000;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 5000;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM2;
  sConfigOC.Pulse = 6000;
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */
  HAL_TIM_MspPostInit(&htim2);

}

/** 
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void) 
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA2_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);

  /*Configure GPIO pin : PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pin : PB0 */
  GPIO_InitStruct.Pin = GPIO_PIN_0;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pins : PD8 PD9 */
  GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF7_USART3;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{

    GPIOA->ODR ^= (1 << 4);
    ADC_flag ++;
    //ADC1->SR &= ~(1 << 0x4);
    asm("NOP");

}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

完全を期すための割り込みハンドラ:

void ADC_IRQHandler(void)
{
  /* USER CODE BEGIN ADC_IRQn 0 */

  /* USER CODE END ADC_IRQn 0 */
  HAL_ADC_IRQHandler(&hadc1);
  /* USER CODE BEGIN ADC_IRQn 1 */

  /* USER CODE END ADC_IRQn 1 */
}

/**
  * @brief This function handles TIM2 global interrupt.
  */
void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */

  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

/**
  * @brief This function handles DMA2 stream0 global interrupt.
  */
void DMA2_Stream0_IRQHandler(void)
{
  /* USER CODE BEGIN DMA2_Stream0_IRQn 0 */

  /* USER CODE END DMA2_Stream0_IRQn 0 */
  HAL_DMA_IRQHandler(&hdma_adc1);
  /* USER CODE BEGIN DMA2_Stream0_IRQn 1 */

  DMA_flag ++;
 // memcpy(ADC_Total + conversion_flag, ADC_Val, sizeof(ADC_Total));
  
    /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
    /* USER CODE END W1_UsageFault_IRQn 0 */
  /* USER CODE END DMA2_Stream0_IRQn 1 */
}

変換が行われるたびにトグルする GPIO を設定しました。TIM2 CH1 は黄色、TIM2 CH2 は青色、ADC 完了 GPIO トグルは紫色です。ここでわかるように、PWM CH2 の最初の立ち上がりエッジで、ADC が変換を完了するため、GPIO がトグルします。これは完璧で、これをすべての立ち上がりエッジで繰り返したいと思います。ただし、2 番目の画像では、まったく同じ時間の後に再び切り替わることはありません。タイマーに関係なく、常にADCを実行してトグルしています。 ここに画像の説明を入力

ここに画像の説明を入力

私はそこに90%いると確信しており、次のタイマートリガーの準備ができているレジスターでビットをクリアするだけでよいのですが、リファレンスマニュアルはまったく明確ではないため、試行錯誤の結果になりました。どんな助けやアイデアも素晴らしいでしょう。ADC_SR または ADC_CR1/CR2 レジスタでこの機能を制御することはできないようです。ありがとう。

4

2 に答える 2