推力を使用してGPUでプログラムを実行するには、、、などreduce
の推力アルゴリズムでプログラムを記述する必要があります。この場合、ループは関数を計算して結果をに格納するだけなので、計算をで書くことができます。Thrustでは入力配列と出力配列が同じ場所に存在する必要があるため、呼び出す前にまず入力配列をデバイスに移動する必要があることに注意してください。transform
sort
transform
F(fi[i], fj[i])
df[i]
transform
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/functional.h>
#include <cstdio>
struct my_functor
: public thrust::binary_function<float,float,float>
{
__host__ __device__
float operator()(float fi, float fj)
{
float d = fi - fj;
if (d < 0)
d = 0;
else
d = d * d;
if (d > 255)
d = 255;
return d;
}
};
int main(void)
{
size_t N = 5;
// allocate storage on host
thrust::host_vector<float> cpu_fi(N);
thrust::host_vector<float> cpu_fj(N);
thrust::host_vector<float> cpu_df(N);
// initialze fi and fj arrays
cpu_fi[0] = 2.0; cpu_fj[0] = 0.0;
cpu_fi[1] = 0.0; cpu_fj[1] = 2.0;
cpu_fi[2] = 3.0; cpu_fj[2] = 1.0;
cpu_fi[3] = 4.0; cpu_fj[3] = 5.0;
cpu_fi[4] = 8.0; cpu_fj[4] = -8.0;
// copy fi and fj to device
thrust::device_vector<float> gpu_fi = cpu_fi;
thrust::device_vector<float> gpu_fj = cpu_fj;
// allocate storage for df
thrust::device_vector<float> gpu_df(N);
// perform transformation
thrust::transform(gpu_fi.begin(), gpu_fi.end(), // first input range
gpu_fj.begin(), // second input range
gpu_df.begin(), // output range
my_functor()); // functor to apply
// copy results back to host
thrust::copy(gpu_df.begin(), gpu_df.end(), cpu_df.begin());
// print results on host
for (size_t i = 0; i < N; i++)
printf("f(%2.0lf,%2.0lf) = %3.0lf\n", cpu_fi[i], cpu_fj[i], cpu_df[i]);
return 0;
}
参考までに、プログラムの出力は次のとおりです。
f( 2, 0) = 4
f( 0, 2) = 0
f( 3, 1) = 4
f( 4, 5) = 0
f( 8,-8) = 255