2

Julia は初めてで、Julia で使用したい Python 関数があります。基本的に、関数が行うことは、データフレーム (numpy ndarray として渡される)、フィルター値、および列インデックスのリスト (配列から) を受け入れ、statsmodelsPython でパッケージを使用してロジスティック回帰を実行することです。これまでのところ、私はこれを試しました:

using PyCall

py"""
import pandas as pd
import numpy as np
import random
import statsmodels.api as sm
import itertools
def reg_frac(state, ind_vars):
    rows = 2000
    total_rows = rows*13
    data = pd.DataFrame({
    'state': ['a', 'b', 'c','d','e','f','g','h','i','j','k','l','m']*rows, \
    'y_var': [random.uniform(0,1) for i in range(total_rows)], \
    'school': [random.uniform(0,10) for i in range(total_rows)], \
    'church': [random.uniform(11,20) for i in range(total_rows)]}).to_numpy()
    try:
        X, y = sm.add_constant(np.array(data[(data[:,0] == state)][:,ind_vars], dtype=float)), np.array(data[(data[:,0] == state), 1], dtype=float)
        model = sm.Logit(y, X).fit(cov_type='HC0', disp=False)      
        rmse = np.sqrt(np.square(np.subtract(y, model.predict(X))).mean())
    except:
        rmse = np.nan
    return [state, ind_vars, rmse] 
"""

reg_frac(state, ind_vars) = (py"reg_frac"(state::Char, ind_vars::Array{Any}))

ただし、これを実行すると、結果がNaN. 私はそれが働いていると思いますが、何かが欠けています。

reg_frac('b', Any[i for i in 2:3])

  0.000244 seconds (249 allocations: 7.953 KiB)
3-element Array{Any,1}:
    'b'
    [2, 3]
 NaN

どんな助けでも大歓迎です。

4

1 に答える 1