2

こちらで説明されているように、テスト セットで 1 ステップの予測を行うことは、予測期間が長くなるにつれて分散が必然的に増加することを回避する方法です。forecastそのセクションで言及されているのは、パッケージのトレーニング済みモデルを使用して、テスト セットで 1 ステップの予測を実行する方法です。fable新しいパッケージを使用して、テスト データのワンステップ予測を実行する同様の方法はありますか? たとえば、ここで説明されているnew_dataパラメーターはこれを処理する可能性がありますが、以下の と の両方の予測が同じであるため、よくわかりません。h = 24new_data = x_test

> library(fable)
> library(fabletools)
> x <- USAccDeaths %>%
+   as_tsibble()
> x
# A tsibble: 72 x 2 [1M]
      index value
      <mth> <dbl>
 1 1973 Jan  9007
 2 1973 Feb  8106
 3 1973 Mar  8928
 4 1973 Apr  9137
 5 1973 May 10017
 6 1973 Jun 10826
 7 1973 Jul 11317
 8 1973 Aug 10744
 9 1973 Sep  9713
10 1973 Oct  9938
# … with 62 more rows
> x_train <- x %>% filter(year(index) < 1977)
> x_test <- x %>% filter(year(index) >= 1977)
> fit <- x_train %>% model(arima = ARIMA(log(value) ~ pdq(0, 1, 1) + PDQ(0, 1, 1)))
> fit
# A mable: 1 x 1
                      arima
                    <model>
1 <ARIMA(0,1,1)(0,1,1)[12]>
> nrow(x_test)
[1] 24
> forecast(fit, h = 24)$.mean
 [1]  7778.052  7268.527  7831.507  7916.845  8769.478  9144.790 10004.816  9326.874  8172.226
[10]  8527.355  8015.100  8378.166  7692.356  7191.343  7751.466  7839.085  8686.833  9062.247
[19]  9918.487  9250.101  8108.202  8463.933  7958.667  8322.497
> forecast(fit, new_data = x_test)$.mean
 [1]  7778.052  7268.527  7831.507  7916.845  8769.478  9144.790 10004.816  9326.874  8172.226
[10]  8527.355  8015.100  8378.166  7692.356  7191.343  7751.466  7839.085  8686.833  9062.247
[19]  9918.487  9250.101  8108.202  8463.933  7958.667  8322.497
4

1 に答える 1