Coefficient
元のコードが遅いのは、非常に大きな式(単純に拡張するとメモリに収まらない式)でも機能するように作られているためだと思います。
元の多項式は次のとおりです。
poly[q_, x_] := Product[Sum[ x^(j*Prime[i]),
{j, 0, Floor[q/Prime[i]]}], {i, 1, PrimePi[q]}]
大きすぎないようにする方法を参照してくださいq
。多項式を展開すると、より多くのメモリが消費され、かなり遅くなります。
In[2]:= Through[{LeafCount, ByteCount}[poly[300, x]]] // Timing
Through[{LeafCount, ByteCount}[Expand@poly[300, x]]] // Timing
Out[2]= { 0.01, { 1859, 55864}}
Out[3]= {25.27, {77368, 3175840}}
それでは、3つの異なる方法で係数を定義し、それらの時間を計りましょう。
coeff[q_] := Module[{x}, Coefficient[poly[q, x], x, q]]
exCoeff[q_] := Module[{x}, Coefficient[Expand@poly[q, x], x, q]]
serCoeff[q_] := Module[{x}, SeriesCoefficient[poly[q, x], {x, 0, q}]]
In[7]:= Table[ coeff[q],{q,1,30}]//Timing
Table[ exCoeff[q],{q,1,30}]//Timing
Table[serCoeff[q],{q,1,30}]//Timing
Out[7]= {0.37,{0,1,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17,19,23,26,30,35,40,46,52,60,67,77,87,98}}
Out[8]= {0.12,{0,1,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17,19,23,26,30,35,40,46,52,60,67,77,87,98}}
Out[9]= {0.06,{0,1,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17,19,23,26,30,35,40,46,52,60,67,77,87,98}}
In[10]:= coeff[100]//Timing
exCoeff[100]//Timing
serCoeff[100]//Timing
Out[10]= {56.28,40899}
Out[11]= { 0.84,40899}
Out[12]= { 0.06,40899}
だからSeriesCoefficient
間違いなく行く方法です。もちろん、あなたが私よりも組み合わせ論に少し優れていて、次のプライムパーティション式(oeis)を知っている場合を除きます。
In[13]:= CoefficientList[Series[1/Product[1-x^Prime[i],{i,1,30}],{x,0,30}],x]
Out[13]= {1,0,1,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17,19,23,26,30,35,40,46,52,60,67,77,87,98}
In[14]:= f[n_]:=Length@IntegerPartitions[n,All,Prime@Range@PrimePi@n]; Array[f,30]
Out[14]= {0,1,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17,19,23,26,30,35,40,46,52,60,67,77,87,98}