すべての説明変数とターゲット変数 (xxx1) を含むデータセット "df_train" があります。さらに、ランダム フォレスト (xxx2 列) をフィッティングするときに使用する重みを含む別のデータセットがあります。3 倍の cv を実装しようとしていますが、何か問題があるようです。クラスの確率について述べていますが、回帰ランダムフォレストに適合させようとしています。残りのエラーの意味がわかりませんでした。
train_control<- trainControl(method="cv", number=3, savePredictions = TRUE)
model2<- caret::train(xxx1~., data=df_train, trControl=train_control,
weights = train$xxx2, method="ranger",
ntree = 64)
Something is wrong; all the RMSE metric values are missing:
RMSE Rsquared MAE
Min. : NA Min. : NA Min. : NA
1st Qu.: NA 1st Qu.: NA 1st Qu.: NA
Median : NA Median : NA Median : NA
Mean :NaN Mean :NaN Mean :NaN
3rd Qu.: NA 3rd Qu.: NA 3rd Qu.: NA
Max. : NA Max. : NA Max. : NA
NA's :6 NA's :6 NA's :6
Error: Stopping
In addition: There were 20 warnings (use warnings() to see them)
> warnings()
Warning messages:
1: In train.default(x, y, weights = w, ...) :
cannnot compute class probabilities for regression
2: model fit failed for Fold1: mtry= 2, min.node.size=5, splitrule=variance Error in ranger::ranger(dependent.variable.name = ".outcome", data = x, :
unused argument (ntree = 64)
3: model fit failed for Fold1: mtry=32, min.node.size=5, splitrule=variance Error in ranger::ranger(dependent.variable.name = ".outcome", data = x, :
unused argument (ntree = 64)
4: .....