8

I have two 3-dimensional arrays, the first two dimensions of which represent matrices and the last one counts through a parameterspace, as a simple example take

A = repmat([1,2; 3,4], [1 1 4]);

(but assume A(:,:,j) is different for each j). How can one easily perform a per-j matrix multiplication of two such matrix-arrays A and B?

C = A; % pre-allocate, nan(size(A,1), size(B,2)) would be better but slower
for jj = 1:size(A, 3)
  C(:,:,jj) = A(:,:,jj) * B(:,:,jj);
end

certainly does the job, but if the third dimension is more like 1e3 elements this is very slow since it doesn't use MATLAB's vectorization. So, is there a faster way?

4

5 に答える 5

6

いくつかのタイミング テストを行ったところ、2x2xN の最速の方法は行列要素を計算することであることがわかりました。

C = A;
C(1,1,:) = A(1,1,:).*B(1,1,:) + A(1,2,:).*B(2,1,:);
C(1,2,:) = A(1,1,:).*B(1,2,:) + A(1,2,:).*B(2,2,:);
C(2,1,:) = A(2,1,:).*B(1,1,:) + A(2,2,:).*B(2,1,:);
C(2,2,:) = A(2,1,:).*B(1,2,:) + A(2,2,:).*B(2,2,:);

一般的なケースでは、for ループが実際には最速であることがわかります (ただし、C を事前に割り当てることを忘れないでください!)。

ただし、行列のセル配列として結果が既にある場合は、 cellfunを使用するのが最速の選択であり、セル要素をループするよりも高速です。

C = cellfun(@mtimes, A, B, 'UniformOutput', false);

ただし、最初にnum2cellを呼び出さなければならず( Ac = num2cell(A, [1 2])) cell2mat、3 次元配列の場合は時間がかかりすぎます。


2 x 2 x 1e4 のランダムなセットに対して行ったタイミングは次のとおりです。

 array-for: 0.057112
 arrayfun : 0.14206
 num2cell : 0.079468
 cell-for : 0.033173
 cellfun  : 0.025223
 cell2mat : 0.010213
 explicit : 0.0021338

明示的とは、2 x 2 行列要素の直接計算を使用することを指します。以下を参照してください。結果は新しいランダム配列でも同様で、以前は不要で、2x2xN の制限がないcellfun場合は最速です。num2cell一般的な 3 次元配列の場合、3 次元をループすることは、すでに最速の選択です。タイミングコードは次のとおりです。

n = 2;
m = 2;
l = 1e4;

A = rand(n,m,l);
B = rand(m,n,l);

% naive for-loop:
tic
%Cf = nan(n,n,l);
Cf = A;
for jl = 1:l
    Cf(:,:,jl) = A(:,:,jl) * B(:,:,jl);
end;
disp([' array-for: ' num2str(toc)]);

% using arrayfun:
tic
Ca = arrayfun(@(k) A(:,:,k)*B(:,:,k), 1:size(A,3), 'UniformOutput',false);
Ca = cat(3,Ca{:});
disp([' arrayfun : ' num2str(toc)]);

tic
Ac = num2cell(A, [1 2]);
Bc = num2cell(B, [1 2]);
disp([' num2cell : ' num2str(toc)]);

% cell for-loop:
tic
Cfc = Ac;
for jl = 1:l
    Cfc{jl} = Ac{jl} * Bc{jl};
end;
disp([' cell-for : ' num2str(toc)]);

% using cellfun:
tic
Cc = cellfun(@mtimes, Ac, Bc, 'UniformOutput', false);
disp([' cellfun  : ' num2str(toc)]);

tic
Cc = cell2mat(Cc);
disp([' cell2mat : ' num2str(toc)]);

tic
Cm = A;
Cm(1,1,:) = A(1,1,:).*B(1,1,:) + A(1,2,:).*B(2,1,:);
Cm(1,2,:) = A(1,1,:).*B(1,2,:) + A(1,2,:).*B(2,2,:);
Cm(2,1,:) = A(2,1,:).*B(1,1,:) + A(2,2,:).*B(2,1,:);
Cm(2,2,:) = A(2,1,:).*B(1,2,:) + A(2,2,:).*B(2,2,:);
disp([' explicit : ' num2str(toc)]);

disp(' ');
于 2011-07-05T09:54:42.447 に答える
4

@TobiasKienzlerの回答で言及されている方法を比較する私のベンチマークテストは次のとおりです。TIMEIT関数を使用して、より正確なタイミングを取得しています。

function [t,v] = matrixMultTest()
    n = 2; m = 2; p = 1e5;
    A = rand(n,m,p);
    B = rand(m,n,p);

    %# time functions
    t = zeros(5,1);
    t(1) = timeit( @() func1(A,B,n,m,p) );
    t(2) = timeit( @() func2(A,B,n,m,p) );
    t(3) = timeit( @() func3(A,B,n,m,p) );
    t(4) = timeit( @() func4(A,B,n,m,p) );
    t(5) = timeit( @() func5(A,B,n,m,p) );

    %# check the results
    v = cell(5,1);
    v{1} = func1(A,B,n,m,p);
    v{2} = func2(A,B,n,m,p);
    v{3} = func3(A,B,n,m,p);
    v{4} = func4(A,B,n,m,p);
    v{5} = func5(A,B,n,m,p);
    assert( isequal(v{:}) )
end

%# simple FOR-loop
function C = func1(A,B,n,m,p)
    C = zeros(n,n,p);
    for k=1:p
        C(:,:,k) = A(:,:,k) * B(:,:,k);
    end
end

%# ARRAYFUN
function C = func2(A,B,n,m,p)
    C = arrayfun(@(k) A(:,:,k)*B(:,:,k), 1:p, 'UniformOutput',false);
    C = cat(3, C{:});
end

%# NUM2CELL/FOR-loop/CELL2MAT
function C = func3(A,B,n,m,p)
    Ac = num2cell(A, [1 2]);
    Bc = num2cell(B, [1 2]);
    C = cell(1,1,p);
    for k=1:p
        C{k} = Ac{k} * Bc{k};
    end;
    C = cell2mat(C);
end

%# NUM2CELL/CELLFUN/CELL2MAT
function C = func4(A,B,n,m,p)
    Ac = num2cell(A, [1 2]);
    Bc = num2cell(B, [1 2]);
    C = cellfun(@mtimes, Ac, Bc, 'UniformOutput', false);
    C = cell2mat(C);
end

%# Loop Unrolling
function C = func5(A,B,n,m,p)
    C = zeros(n,n,p);
    C(1,1,:) = A(1,1,:).*B(1,1,:) + A(1,2,:).*B(2,1,:);
    C(1,2,:) = A(1,1,:).*B(1,2,:) + A(1,2,:).*B(2,2,:);
    C(2,1,:) = A(2,1,:).*B(1,1,:) + A(2,2,:).*B(2,1,:);
    C(2,2,:) = A(2,1,:).*B(1,2,:) + A(2,2,:).*B(2,2,:);
end

結果:

>> [t,v] = matrixMultTest();
>> t
t =
      0.63633      # FOR-loop
      1.5902       # ARRAYFUN
      1.1257       # NUM2CELL/FOR-loop/CELL2MAT
      1.0759       # NUM2CELL/CELLFUN/CELL2MAT
      0.05712      # Loop Unrolling

コメントで説明したように、単純な FOR ループが最善の解決策です (最後のケースでのループの巻き戻しは除きますが、これはこれらの小さな 2 行 2 列の行列に対してのみ実行可能です)。

于 2011-07-14T00:45:18.740 に答える
1

1 つの手法は、2Nx2N 疎行列を作成し、A と B の両方に対して 2x2 行列を対角線に埋め込むことです。疎行列で積を実行し、少し巧妙なインデックス付けで結果を取得し、それを 2x2xN に再形成します。

しかし、これが単純なループよりも高速になるとは思えません。

于 2011-07-05T10:37:04.023 に答える
1

私の経験では、さらに高速な方法は、3 次元マトリックスに対してドット乗算と加算を使用することです。次の関数 z_matmultiply(A,B) は、同じ深さを持つ 2 つの 3 次元行列を乗算します。ドット乗算は可能な限り並列に行われるため、この関数の速度を確認し、多数の繰り返しで他の関数と比較することができます。

function C = z_matmultiply(A,B)

[ma,na,oa] = size(A);
[mb,nb,ob] = size(B);

%preallocate the output as we will do a loop soon
C = zeros(ma,nb,oa);

%error message if the dimensions are not appropriate
if na ~= mb || oa ~= ob
    fprintf('\n z_matmultiply warning: Matrix Dimmensions Inconsistent \n')
else

% if statement minimizes for loops by looping the smallest matrix dimension 
if ma > nb
    for j = 1:nb
        Bp(j,:,:) = B(:,j,:);
        C(:,j,:) = sum(A.*repmat(Bp(j,:,:),[ma,1]),2);
    end
else
    for i = 1:ma
        Ap(:,i,:) = A(i,:,:);
        C(i,:,:) = sum(repmat(Ap(:,i,:),[1,nb]).*B,1);
    end 
end

end
于 2013-10-22T15:06:34.293 に答える