20

と直接同等であるCountDownLatchが、リセット可能なものが必要です (スレッドセーフのままです!)。このような状況では機能しないため、従来の同期構造は使用できません (複雑なロックの問題)。現在、私は多くのCountDownLatchオブジェクトを作成しており、それぞれが前のものを置き換えています。これはGCの若い世代で行われていると思います(オブジェクトの数が非常に多いため)。以下のラッチを使用するコードを見ることができます (これjava.netは ns-3 ネットワーク シミュレータ インターフェイスのモックの一部です)。

CyclicBarrier(JDK5+) またはPhaser(JDK7)を試すことも考えられます。

私はコードをテストして、この問題の解決策を見つけた人に連絡を取ることができます。実行中のシステムにコードを挿入して何が起こるかを確認できるのは私だけだからです :)

/**
 *
 */
package kokunet;

import java.io.IOException;
import java.nio.channels.ClosedSelectorException;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import kokuks.IConnectionSocket;
import kokuks.KKSAddress;
import kokuks.KKSSocket;
import kokuks.KKSSocketListener;

/**
 * KSelector
 * @version 1.0
 * @author Chris Dennett
 */
public class KSelector extends SelectorImpl {
    // True if this Selector has been closed
    private volatile boolean closed = false;

    // Lock for close and cleanup
    final class CloseLock {}
    private final Object closeLock = new CloseLock();

    private volatile boolean selecting = false;
    private volatile boolean wakeup = false;

    class SocketListener implements KKSSocketListener {
        protected volatile CountDownLatch latch = null;

        /**
         *
         */
        public SocketListener() {
            newLatch();
        }

        protected synchronized CountDownLatch newLatch() {
            return this.latch = new CountDownLatch(1);
        }

        protected synchronized void refreshReady(KKSSocket socket) {
            if (!selecting) return;

            synchronized (socketToChannel) {
                SelChImpl ch = socketToChannel.get(socket);
                if (ch == null) {
                    System.out.println("ks sendCB: channel not found for socket: " + socket);
                    return;
                }
                synchronized (channelToKey) {
                    SelectionKeyImpl sk = channelToKey.get(ch);
                    if (sk != null) {
                        if (handleSelect(sk)) {
                            latch.countDown();
                        }
                    }
                }
            }
        }
        @Override
        public void connectionSucceeded(KKSSocket socket) {
            refreshReady(socket);
        }
        @Override
        public void connectionFailed(KKSSocket socket) {
            refreshReady(socket);
        }
        @Override
        public void dataSent(KKSSocket socket, long bytesSent) {
            refreshReady(socket);
        }
        @Override
        public void sendCB(KKSSocket socket, long bytesAvailable) {
            refreshReady(socket);
        }
        @Override
        public void onRecv(KKSSocket socket) {
            refreshReady(socket);
        }
        @Override
        public void newConnectionCreated(KKSSocket socket, KKSSocket newSocket, KKSAddress remoteaddress) {
            refreshReady(socket);
        }
        @Override
        public void normalClose(KKSSocket socket) {
            wakeup();
        }
        @Override
        public void errorClose(KKSSocket socket) {
            wakeup();
        }
    }

    protected final Map<KKSSocket, SelChImpl>        socketToChannel = new HashMap<KKSSocket, SelChImpl>();
    protected final Map<SelChImpl, SelectionKeyImpl> channelToKey    = new HashMap<SelChImpl, SelectionKeyImpl>();
    protected final SocketListener currListener = new SocketListener();
    protected Thread selectingThread = null;

    SelChImpl getChannelForSocket(KKSSocket s) {
        synchronized (socketToChannel) {
            return socketToChannel.get(s);
        }
    }

    SelectionKeyImpl getSelKeyForChannel(KKSSocket s) {
        synchronized (channelToKey) {
            return channelToKey.get(s);
        }
    }

    protected boolean markRead(SelectionKeyImpl impl) {
        synchronized (impl) {
            if (!impl.isValid()) return false;
            impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_READ);
            return selectedKeys.add(impl);
        }
    }

    protected boolean markWrite(SelectionKeyImpl impl) {
        synchronized (impl) {
            if (!impl.isValid()) return false;
            impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_WRITE);
            return selectedKeys.add(impl);
        }
    }

    protected boolean markAccept(SelectionKeyImpl impl) {
        synchronized (impl) {
            if (!impl.isValid()) return false;
            impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_ACCEPT);
            return selectedKeys.add(impl);
        }
    }

    protected boolean markConnect(SelectionKeyImpl impl) {
        synchronized (impl) {
            if (!impl.isValid()) return false;
            impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_CONNECT);
            return selectedKeys.add(impl);
        }
    }

    /**
     * @param provider
     */
    protected KSelector(SelectorProvider provider) {
        super(provider);
    }

    /* (non-Javadoc)
     * @see kokunet.SelectorImpl#implClose()
     */
    @Override
    protected void implClose() throws IOException {
        provider().getApp().printMessage("implClose: closed: " + closed);
        synchronized (closeLock) {
            if (closed) return;
            closed = true;
            for (SelectionKey sk : keys) {
                provider().getApp().printMessage("dereg1");
                deregister((AbstractSelectionKey)sk);
                provider().getApp().printMessage("dereg2");
                SelectableChannel selch = sk.channel();
                if (!selch.isOpen() && !selch.isRegistered())
                    ((SelChImpl)selch).kill();
            }
            implCloseInterrupt();
        }
    }

    protected void implCloseInterrupt() {
        wakeup();
    }

    private boolean handleSelect(SelectionKey k) {
        synchronized (k) {
            boolean notify = false;

            if (!k.isValid()) {
                k.cancel();
                ((SelectionKeyImpl)k).channel.socket().removeListener(currListener);
                return false;
            }

            SelectionKeyImpl ski = (SelectionKeyImpl)k;

            if ((ski.interestOps() & SelectionKeyImpl.OP_READ) != 0) {
                if (ski.channel.socket().getRxAvailable() > 0) {
                    notify |= markRead(ski);
                }
            }

            if ((ski.interestOps() & SelectionKeyImpl.OP_WRITE) != 0) {
                if (ski.channel.socket().getTxAvailable() > 0) {
                    notify |= markWrite(ski);
                }
            }

            if ((ski.interestOps() & SelectionKeyImpl.OP_CONNECT) != 0) {
                if (!ski.channel.socket().isConnectionless()) {
                    IConnectionSocket cs = (IConnectionSocket)ski.channel.socket();
                    if (!ski.channel.socket().isAccepting() && !cs.isConnecting() && !cs.isConnected()) {
                        notify |= markConnect(ski);
                    }
                }
            }

            if ((ski.interestOps() & SelectionKeyImpl.OP_ACCEPT) != 0) {
                //provider().getApp().printMessage("accept check: ski: " + ski + ", connectionless: " + ski.channel.socket().isConnectionless() + ", listening: " + ski.channel.socket().isListening() + ", hasPendingConn: " + (ski.channel.socket().isConnectionless() ? "nope!" : ((IConnectionSocket)ski.channel.socket()).hasPendingConnections()));
                if (!ski.channel.socket().isConnectionless() && ski.channel.socket().isListening()) {
                    IConnectionSocket cs = (IConnectionSocket)ski.channel.socket();
                    if (cs.hasPendingConnections()) {
                        notify |= markAccept(ski);
                    }
                }
            }
            return notify;
        }
    }

    private boolean handleSelect() {
        boolean notify = false;

        // get initial status
        for (SelectionKey k : keys) {
            notify |= handleSelect(k);
        }

        return notify;
    }

    /* (non-Javadoc)
     * @see kokunet.SelectorImpl#doSelect(long)
     */
    @Override
    protected int doSelect(long timeout) throws IOException {
        processDeregisterQueue();

        long timestartedms = System.currentTimeMillis();

        synchronized (selectedKeys) {
            synchronized (currListener) {
                wakeup = false;
                selectingThread = Thread.currentThread();
                selecting = true;
            }
            try {
                handleSelect();

                if (!selectedKeys.isEmpty() || timeout == 0) {
                    return selectedKeys.size();
                }

                //TODO: useless op if we have keys available
                for (SelectionKey key : keys) {
                    ((SelectionKeyImpl)key).channel.socket().addListener(currListener);
                }
                try {
                    while (!wakeup && isOpen() && selectedKeys.isEmpty()) {
                        CountDownLatch latch = null;
                        synchronized (currListener) {
                            if (wakeup || !isOpen() || !selectedKeys.isEmpty()) {
                                break;
                            }
                            latch = currListener.newLatch();
                        }
                        try {
                            if (timeout > 0) {
                                long currtimems = System.currentTimeMillis();
                                long remainingMS = (timestartedms + timeout) - currtimems;

                                if (remainingMS > 0) {
                                    latch.await(remainingMS, TimeUnit.MILLISECONDS);
                                } else {
                                    break;
                                }
                            } else {
                                latch.await();
                            }
                        } catch (InterruptedException e) {

                        }
                    }
                    return selectedKeys.size();
                } finally {
                    for (SelectionKey key : keys) {
                        ((SelectionKeyImpl)key).channel.socket().removeListener(currListener);
                    }
                }
            } finally {
                synchronized (currListener) {
                    selecting = false;
                    selectingThread = null;
                    wakeup = false;
                }
            }
        }
    }

    /* (non-Javadoc)
     * @see kokunet.SelectorImpl#implRegister(kokunet.SelectionKeyImpl)
     */
    @Override
    protected void implRegister(SelectionKeyImpl ski) {
        synchronized (closeLock) {
            if (closed) throw new ClosedSelectorException();
            synchronized (channelToKey) {
                synchronized (socketToChannel) {
                    keys.add(ski);
                    socketToChannel.put(ski.channel.socket(), ski.channel);
                    channelToKey.put(ski.channel, ski);
                }
            }
        }

    }

    /* (non-Javadoc)
     * @see kokunet.SelectorImpl#implDereg(kokunet.SelectionKeyImpl)
     */
    @Override
    protected void implDereg(SelectionKeyImpl ski) throws IOException {
        synchronized (channelToKey) {
            synchronized (socketToChannel) {
                keys.remove(ski);
                socketToChannel.remove(ski.channel.socket());
                channelToKey.remove(ski.channel);

                SelectableChannel selch = ski.channel();

                if (!selch.isOpen() && !selch.isRegistered())
                    ((SelChImpl)selch).kill();
            }
        }
    }

    /* (non-Javadoc)
     * @see kokunet.SelectorImpl#wakeup()
     */
    @Override
    public Selector wakeup() {
        synchronized (currListener) {
            if (selecting) {
                wakeup = true;
                selecting = false;
                selectingThread.interrupt();
                selectingThread = null;
            }
        }
        return this;
    }
}

乾杯、
クリス

4

9 に答える 9

23

内部クラスを初期状態 (開始カウント) にリセットするメソッドをコピーCountDownLatchして実装しました:) 正常に動作するようです。不要なオブジェクトの作成はもうありません\o/ private のため、サブクラス化できませんでした。ブー。reset()Syncsync

import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;

/**
 * A synchronization aid that allows one or more threads to wait until
 * a set of operations being performed in other threads completes.
 *
 * <p>A {@code CountDownLatch} is initialized with a given <em>count</em>.
 * The {@link #await await} methods block until the current count reaches
 * zero due to invocations of the {@link #countDown} method, after which
 * all waiting threads are released and any subsequent invocations of
 * {@link #await await} return immediately.  This is a one-shot phenomenon
 * -- the count cannot be reset.  If you need a version that resets the
 * count, consider using a {@link CyclicBarrier}.
 *
 * <p>A {@code CountDownLatch} is a versatile synchronization tool
 * and can be used for a number of purposes.  A
 * {@code CountDownLatch} initialized with a count of one serves as a
 * simple on/off latch, or gate: all threads invoking {@link #await await}
 * wait at the gate until it is opened by a thread invoking {@link
 * #countDown}.  A {@code CountDownLatch} initialized to <em>N</em>
 * can be used to make one thread wait until <em>N</em> threads have
 * completed some action, or some action has been completed N times.
 *
 * <p>A useful property of a {@code CountDownLatch} is that it
 * doesn't require that threads calling {@code countDown} wait for
 * the count to reach zero before proceeding, it simply prevents any
 * thread from proceeding past an {@link #await await} until all
 * threads could pass.
 *
 * <p><b>Sample usage:</b> Here is a pair of classes in which a group
 * of worker threads use two countdown latches:
 * <ul>
 * <li>The first is a start signal that prevents any worker from proceeding
 * until the driver is ready for them to proceed;
 * <li>The second is a completion signal that allows the driver to wait
 * until all workers have completed.
 * </ul>
 *
 * <pre>
 * class Driver { // ...
 *   void main() throws InterruptedException {
 *     CountDownLatch startSignal = new CountDownLatch(1);
 *     CountDownLatch doneSignal = new CountDownLatch(N);
 *
 *     for (int i = 0; i < N; ++i) // create and start threads
 *       new Thread(new Worker(startSignal, doneSignal)).start();
 *
 *     doSomethingElse();            // don't let run yet
 *     startSignal.countDown();      // let all threads proceed
 *     doSomethingElse();
 *     doneSignal.await();           // wait for all to finish
 *   }
 * }
 *
 * class Worker implements Runnable {
 *   private final CountDownLatch startSignal;
 *   private final CountDownLatch doneSignal;
 *   Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
 *      this.startSignal = startSignal;
 *      this.doneSignal = doneSignal;
 *   }
 *   public void run() {
 *      try {
 *        startSignal.await();
 *        doWork();
 *        doneSignal.countDown();
 *      } catch (InterruptedException ex) {} // return;
 *   }
 *
 *   void doWork() { ... }
 * }
 *
 * </pre>
 *
 * <p>Another typical usage would be to divide a problem into N parts,
 * describe each part with a Runnable that executes that portion and
 * counts down on the latch, and queue all the Runnables to an
 * Executor.  When all sub-parts are complete, the coordinating thread
 * will be able to pass through await. (When threads must repeatedly
 * count down in this way, instead use a {@link CyclicBarrier}.)
 *
 * <pre>
 * class Driver2 { // ...
 *   void main() throws InterruptedException {
 *     CountDownLatch doneSignal = new CountDownLatch(N);
 *     Executor e = ...
 *
 *     for (int i = 0; i < N; ++i) // create and start threads
 *       e.execute(new WorkerRunnable(doneSignal, i));
 *
 *     doneSignal.await();           // wait for all to finish
 *   }
 * }
 *
 * class WorkerRunnable implements Runnable {
 *   private final CountDownLatch doneSignal;
 *   private final int i;
 *   WorkerRunnable(CountDownLatch doneSignal, int i) {
 *      this.doneSignal = doneSignal;
 *      this.i = i;
 *   }
 *   public void run() {
 *      try {
 *        doWork(i);
 *        doneSignal.countDown();
 *      } catch (InterruptedException ex) {} // return;
 *   }
 *
 *   void doWork() { ... }
 * }
 *
 * </pre>
 *
 * <p>Memory consistency effects: Actions in a thread prior to calling
 * {@code countDown()}
 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
 * actions following a successful return from a corresponding
 * {@code await()} in another thread.
 *
 * @since 1.5
 * @author Doug Lea
 */
public class ResettableCountDownLatch {
    /**
     * Synchronization control For CountDownLatch.
     * Uses AQS state to represent count.
     */
    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        public final int startCount;

        Sync(int count) {
            this.startCount = count;
            setState(startCount);
        }

        int getCount() {
            return getState();
        }

        public int tryAcquireShared(int acquires) {
            return getState() == 0? 1 : -1;
        }

        public boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }

        public void reset() {
             setState(startCount);
        }
    }

    private final Sync sync;

    /**
     * Constructs a {@code CountDownLatch} initialized with the given count.
     *
     * @param count the number of times {@link #countDown} must be invoked
     *        before threads can pass through {@link #await}
     * @throws IllegalArgumentException if {@code count} is negative
     */
    public ResettableCountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

    /**
     * Causes the current thread to wait until the latch has counted down to
     * zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
     *
     * <p>If the current count is zero then this method returns immediately.
     *
     * <p>If the current count is greater than zero then the current
     * thread becomes disabled for thread scheduling purposes and lies
     * dormant until one of two things happen:
     * <ul>
     * <li>The count reaches zero due to invocations of the
     * {@link #countDown} method; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread.
     * </ul>
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * @throws InterruptedException if the current thread is interrupted
     *         while waiting
     */
    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

    public void reset() {
        sync.reset();
    }

    /**
     * Causes the current thread to wait until the latch has counted down to
     * zero, unless the thread is {@linkplain Thread#interrupt interrupted},
     * or the specified waiting time elapses.
     *
     * <p>If the current count is zero then this method returns immediately
     * with the value {@code true}.
     *
     * <p>If the current count is greater than zero then the current
     * thread becomes disabled for thread scheduling purposes and lies
     * dormant until one of three things happen:
     * <ul>
     * <li>The count reaches zero due to invocations of the
     * {@link #countDown} method; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread; or
     * <li>The specified waiting time elapses.
     * </ul>
     *
     * <p>If the count reaches zero then the method returns with the
     * value {@code true}.
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * <p>If the specified waiting time elapses then the value {@code false}
     * is returned.  If the time is less than or equal to zero, the method
     * will not wait at all.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the {@code timeout} argument
     * @return {@code true} if the count reached zero and {@code false}
     *         if the waiting time elapsed before the count reached zero
     * @throws InterruptedException if the current thread is interrupted
     *         while waiting
     */
    public boolean await(long timeout, TimeUnit unit)
        throws InterruptedException {
        return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
    }

    /**
     * Decrements the count of the latch, releasing all waiting threads if
     * the count reaches zero.
     *
     * <p>If the current count is greater than zero then it is decremented.
     * If the new count is zero then all waiting threads are re-enabled for
     * thread scheduling purposes.
     *
     * <p>If the current count equals zero then nothing happens.
     */
    public void countDown() {
        sync.releaseShared(1);
    }

    /**
     * Returns the current count.
     *
     * <p>This method is typically used for debugging and testing purposes.
     *
     * @return the current count
     */
    public long getCount() {
        return sync.getCount();
    }

    /**
     * Returns a string identifying this latch, as well as its state.
     * The state, in brackets, includes the String {@code "Count ="}
     * followed by the current count.
     *
     * @return a string identifying this latch, as well as its state
     */
    public String toString() {
        return super.toString() + "[Count = " + sync.getCount() + "]";
    }
}
于 2011-07-06T13:11:21.083 に答える
4

Phaserにはさらに多くのオプションがあり、それを使用してリセット可能な countdownLatch を実装できます。

以下のサイトから以下の基本概念をお読みください。

https://examples.javacodegeeks.com/core-java/util/concurrent/phaser/java-util-concurrent-phaser-example/

http://netjs.blogspot.in/2016/01/phaser-in-Java-concurrency.html

import java.util.concurrent.Phaser;
/**
 * Resettable countdownLatch using phaser
 */
public class PhaserExample {
    public static void main(String[] args) throws InterruptedException {
        Phaser phaser = new Phaser(3); // you can use constructor hint or
                                        // register() or mixture of both
        // register self... so parties are incremented to 4 (3+1) now
        phaser.register();
        //register is one time call for all the phases.
        //means no need to register for every phase             


        int phasecount = phaser.getPhase();
        System.out.println("Phasecount is " + phasecount);
        new PhaserExample().testPhaser(phaser, 2000);
        new PhaserExample().testPhaser(phaser, 4000);
        new PhaserExample().testPhaser(phaser, 6000);

        // similar to await() in countDownLatch/CyclicBarrier
        // parties are decremented to 3 (4+1) now
        phaser.arriveAndAwaitAdvance(); 
        // once all the thread arrived at same level, barrier opens
        System.out.println("Barrier has broken.");
        phasecount = phaser.getPhase();
        System.out.println("Phasecount is " + phasecount);

        //second phase
        new PhaserExample().testPhaser(phaser, 2000);
        new PhaserExample().testPhaser(phaser, 4000);
        new PhaserExample().testPhaser(phaser, 6000);
        phaser.arriveAndAwaitAdvance(); 
        // once all the thread arrived at same level, barrier opens
        System.out.println("Barrier has broken.");
        phasecount = phaser.getPhase();
        System.out.println("Phasecount is " + phasecount);

    }

    private void testPhaser(final Phaser phaser, final int sleepTime) {
        // phaser.register(); //Already constructor hint is given so not
        // required
        new Thread() {
            @Override
            public void run() {
                try {
                    Thread.sleep(sleepTime);
                    System.out.println(Thread.currentThread().getName() + " arrived");
                    // phaser.arrive(); //similar to CountDownLatch#countDown()
                    phaser.arriveAndAwaitAdvance();// thread will wait till Barrier opens
                    // arriveAndAwaitAdvance is similar to CyclicBarrier#await()
                }
                catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName() + " after passing barrier");
            }
        }.start();
    }
}
于 2017-04-28T15:09:38.353 に答える
0
public class ResettableLatch {
private static final class Sync extends AbstractQueuedSynchronizer {

    Sync(int count) {
        setState(count);
    }

    int getCount() {
        return getState();
    }

    protected int tryAcquireShared(int acquires) {
        return getState() == 0 ? 1 : -1;
    }

    public void reset(int count) {
        setState(count);
    }

    protected boolean tryReleaseShared(int releases) {
        for (;;) {
            int c = getState();
            if (c == 0)
                return false;
            int nextc = c - 1;
            if (compareAndSetState(c, nextc))
                return nextc == 0;
        }
    }
}

private final Sync sync;

public ResettableLatch(int count) {
    if (count < 0)
        throw new IllegalArgumentException("count < 0");
    this.sync = new Sync(count);
}

public void await() throws InterruptedException {
    sync.acquireSharedInterruptibly(1);
}

public boolean await(long timeout, TimeUnit unit) throws InterruptedException {
    return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}

public void countDown() {
    sync.releaseShared(1);
}

public long getCount() {
    return sync.getCount();
}

public void reset(int count) {
    sync.reset(count);
}
}

これは私にとってはうまくいきました。

于 2019-11-16T09:45:18.320 に答える