簡単にするために、関数sin(x)があり、-1 と 1 の間で 1000 個のサンプルを計算したとします。これらのサンプルをプロットできます。次のステップでは、sin(x) の積分をプロットします。これは- cos(x) + Cになります。これで、次のように既存のサンプルとの積分を計算できます。
y[n] = x[n] + y[n-1]
これは累積合計であるため、y 軸で -1 と 1 の間のサンプルを取得するために正規化する必要があります。
y = 2 * ( x - 最小(x) / 最大(x) - 最小(x) ) - 1
正規化するには、最大値と最小値が必要です。
次に、sin(x) の次の 1000 サンプルを計算し、積分を再度計算します。これは累積合計であるため、新しい最大値が得られます。つまり、2000 個のサンプルすべてを正規化する必要があります。
今私の質問は基本的に次のとおりです。
最大値と最小値を知らずに、このコンテキストでサンプルを正規化するにはどうすればよいですか? 新しい最大値/最小値を持つ新しいサンプルのセットがある場合、以前のすべてのサンプルを再度正規化することを防ぐにはどうすればよいですか?