私は SURF に関するプロジェクトを行っており、これまで SURF 機能を正常に実装しており、機能評価も正しく行っています。しかし、DESCRIPTOR 評価を行う方法がわかりません... c++/opencv svn を使用しています。
ここでは、opencv svn のサンプル コードを見つけることができます (これは、EVALUATOR の使用方法を示していますが、私のコードでは使用できませんでした...
私のコード:
#include "cv.h" // include standard OpenCV headers, same as before
#include "highgui.h"
#include "ml.h"
#include <stdio.h>
#include <iostream>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <vector>
//#include "precomp.hpp"
using namespace cv; // all the new API is put into "cv" namespace. Export its content
using namespace std;
using std::cout;
using std::cerr;
using std::endl;
using std::vector;
// enable/disable use of mixed API in the code below.
#define DEMO_MIXED_API_USE 1
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng )
{
H.create(3, 3, CV_32FC1);
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f);
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f);
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f);
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f);
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f);
warpPerspective( src, dst, H, src.size() );
}
double match(const vector<KeyPoint>& /*kpts_train*/, const vector<KeyPoint>& /*kpts_query*/, DescriptorMatcher& matcher,
const Mat& train, const Mat& query, vector<DMatch>& matches)
{
double t = (double)getTickCount();
matcher.match(query, train, matches); //Using features2d
return ((double)getTickCount() - t) / getTickFrequency();
}
void simpleMatching( Ptr<DescriptorMatcher>& descriptorMatcher,
const Mat& descriptors1, const Mat& descriptors2,
vector<DMatch>& matches12 );
int main( int argc, char** argv )
{
string im1_name, im2_name;
im1_name = "lena.jpg";
im2_name = "lena.jpg";
Mat img1 = imread(im1_name, 1);
Mat img2 = imread(im2_name, 1);
RNG rng = theRNG();
Mat H12;
warpPerspectiveRand(img1, img2, H12, rng );
SurfFeatureDetector detector(2000);
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
float repeatability;
int correspCount;
evaluateFeatureDetector( img1, img2, H12, &keypoints1, &keypoints2, repeatability, correspCount );
cout << "repeatability = " << repeatability << endl;
cout << "correspCount = " << correspCount << endl;
// computing descriptors
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);
return 0;
}
だから私の質問は次のとおりです:SURFの記述子を評価する方法(方法)私は多くの方法で試しましたが、それを行うことができませんでした..
どうもありがとう