これは私が問題として開いた質問ですが、パッケージの作成者から聞いていないので、ここで質問しようと思いました. ありがとう!
時間差のある xreg を使用して予測すると、いくつかの不一致に気付きました。具体的には、h <= ラグ期間の予測。元のモデルに提供された履歴データは、予測を生成する前に新しいデータに追加されていないようです。以下の例では、fpp3 のラグ = 2 の例を使用しています。最初の予測fc1
は、本で生成されたものと同じです。2 番目の予測では、過去の広告データを で生成された新しい広告データとバインドすることで、fc2
を拡張します。これを行うと、vsで異なる予測が得られます。の予測は履歴 (xreg) データにアクセスできないように思われるため、TVaderts は次のように扱われます。new_data
insurance_future
fc2
fc1
fc1
NA
地平線の最初の 2 つのステップのために。これは正しいです?もしそうなら、そのデータはそのままに含まれるべきではありませんfc2
か?これが関係しているかもしれません。
library(fpp3)
#> ── Attaching packages ──────────────────────────────────────────── fpp3 0.4.0 ──
#> ✓ tibble 3.1.2 ✓ tsibble 1.0.1
#> ✓ dplyr 1.0.6 ✓ tsibbledata 0.3.0
#> ✓ tidyr 1.1.3 ✓ feasts 0.2.1
#> ✓ lubridate 1.7.10 ✓ fable 0.3.1
#> ✓ ggplot2 3.3.3
#> ── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
#> x lubridate::date() masks base::date()
#> x dplyr::filter() masks stats::filter()
#> x tsibble::intersect() masks base::intersect()
#> x tsibble::interval() masks lubridate::interval()
#> x dplyr::lag() masks stats::lag()
#> x tsibble::setdiff() masks base::setdiff()
#> x tsibble::union() masks base::union()
library(fabletools)
library(fable)
library(dplyr)
library(tsibble)
fit <- insurance %>%
# Restrict data so models use same fitting period
# Estimate models
model(
lag2 = ARIMA(Quotes ~ pdq(d = 0) +
TVadverts + lag(TVadverts) +
lag(TVadverts, 2))
)
insurance_future <- new_data(insurance, 20) %>%
mutate(TVadverts = 8)
# Forecast as shown in https://otexts.com/fpp3/lagged-predictors.html
fc1 <- fit %>%
forecast(insurance_future)
# Manually pre-pend historic advert data to future data to ensure presence of
# lagged regressors
fc2 <- fit %>%
forecast(bind_rows(select(insurance, -Quotes), insurance_future)) %>%
filter_index(as.character(min(insurance_future$Month)) ~ .)
print(fc1)
#> # A fable: 20 x 5 [1M]
#> # Key: .model [1]
#> .model Month Quotes .mean TVadverts
#> <chr> <mth> <dist> <dbl> <dbl>
#> 1 lag2 2005 May N(13, 0.23) 13.0 8
#> 2 lag2 2005 Jun N(13, 0.59) 13.0 8
#> 3 lag2 2005 Jul N(13, 0.72) 13.2 8
#> 4 lag2 2005 Aug N(13, 0.72) 13.2 8
#> 5 lag2 2005 Sep N(13, 0.72) 13.2 8
#> 6 lag2 2005 Oct N(13, 0.72) 13.2 8
#> 7 lag2 2005 Nov N(13, 0.72) 13.2 8
#> 8 lag2 2005 Dec N(13, 0.72) 13.2 8
#> 9 lag2 2006 Jan N(13, 0.72) 13.2 8
#> 10 lag2 2006 Feb N(13, 0.72) 13.2 8
#> 11 lag2 2006 Mar N(13, 0.72) 13.2 8
#> 12 lag2 2006 Apr N(13, 0.72) 13.2 8
#> 13 lag2 2006 May N(13, 0.72) 13.2 8
#> 14 lag2 2006 Jun N(13, 0.72) 13.2 8
#> 15 lag2 2006 Jul N(13, 0.72) 13.2 8
#> 16 lag2 2006 Aug N(13, 0.72) 13.2 8
#> 17 lag2 2006 Sep N(13, 0.72) 13.2 8
#> 18 lag2 2006 Oct N(13, 0.72) 13.2 8
#> 19 lag2 2006 Nov N(13, 0.72) 13.2 8
#> 20 lag2 2006 Dec N(13, 0.72) 13.2 8
print(fc2)
#> # A fable: 20 x 5 [1M]
#> # Key: .model [1]
#> .model Month Quotes .mean TVadverts
#> <chr> <mth> <dist> <dbl> <dbl>
#> 1 lag2 2005 May N(14, 0.72) 13.5 8
#> 2 lag2 2005 Jun N(13, 0.72) 13.3 8
#> 3 lag2 2005 Jul N(13, 0.72) 13.2 8
#> 4 lag2 2005 Aug N(13, 0.72) 13.2 8
#> 5 lag2 2005 Sep N(13, 0.72) 13.2 8
#> 6 lag2 2005 Oct N(13, 0.72) 13.2 8
#> 7 lag2 2005 Nov N(13, 0.72) 13.2 8
#> 8 lag2 2005 Dec N(13, 0.72) 13.2 8
#> 9 lag2 2006 Jan N(13, 0.72) 13.2 8
#> 10 lag2 2006 Feb N(13, 0.72) 13.2 8
#> 11 lag2 2006 Mar N(13, 0.72) 13.2 8
#> 12 lag2 2006 Apr N(13, 0.72) 13.2 8
#> 13 lag2 2006 May N(13, 0.72) 13.2 8
#> 14 lag2 2006 Jun N(13, 0.72) 13.2 8
#> 15 lag2 2006 Jul N(13, 0.72) 13.2 8
#> 16 lag2 2006 Aug N(13, 0.72) 13.2 8
#> 17 lag2 2006 Sep N(13, 0.72) 13.2 8
#> 18 lag2 2006 Oct N(13, 0.72) 13.2 8
#> 19 lag2 2006 Nov N(13, 0.72) 13.2 8
#> 20 lag2 2006 Dec N(13, 0.72) 13.2 8
waldo::compare(fc1, fc2)
#> `old$Quotes[[1]]$mu`: 13.0
#> `new$Quotes[[1]]$mu`: 13.5
#>
#> `old$Quotes[[1]]$sigma`: 0.5
#> `new$Quotes[[1]]$sigma`: 0.8
#>
#> `old$Quotes[[2]]$mu`: 13.0
#> `new$Quotes[[2]]$mu`: 13.3
#>
#> `old$Quotes[[2]]$sigma`: 0.77
#> `new$Quotes[[2]]$sigma`: 0.85
#>
#> `old$.mean[1:5]`: 13.0 13.0 13.2 13.2 13.2
#> `new$.mean[1:5]`: 13.5 13.3 13.2 13.2 13.2
不思議なことに、新しいラグ変数を (数式ではなく) 手動で作成すると、モデルの結果は fpp3 の「基本ケース」と一致します (fc1
私の例では)。
insurance_manlag <- insurance %>%
mutate(TVadverts1 = lag(TVadverts),
TVadverts2 = lag(TVadverts, 2))
fit <- insurance_manlag %>%
# Restrict data so models use same fitting period
# Estimate models
model(
lag2 = ARIMA(Quotes ~ pdq(d = 0) +
TVadverts + TVadverts1 + TVadverts2)
)
insurance_man_future <- append_row(insurance, n = 20) %>%
replace_na(replace = list(TVadverts = 8)) %>%
mutate(TVadverts1 = lag(TVadverts),
TVadverts2 = lag(TVadverts, 2)) %>%
slice_tail(n = 20)
# Forecast as shown in https://otexts.com/fpp3/lagged-predictors.html
fc3 <- fit %>%
forecast(insurance_man_future)
waldo::compare(fc1$Quotes, fc3$Quotes)
#> ✓ No differences
waldo::compare(fc2$Quotes, fc3$Quotes)
#> `old[[1]]$mu`: 13.5
#> `new[[1]]$mu`: 13.0
#>
#> `old[[1]]$sigma`: 0.8
#> `new[[1]]$sigma`: 0.5
#>
#> `old[[2]]$mu`: 13.3
#> `new[[2]]$mu`: 13.0
#>
#> `old[[2]]$sigma`: 0.85
#> `new[[2]]$sigma`: 0.77
reprex パッケージ(v2.0.0)により 2021-06-02 に作成
fc1
この再現により、私はそれが正しいと信じるようになりfc2
ます。もしそうなら、それで起こっていることは、それが(および)fc2
のそれとは異なる予測を持っている原因ですか?fc1
fc3