データシェーダーでプロットを作成しようとしています。データ自体は、極座標の点の時系列です。私はそれらをデカルト座標に変換し(等間隔のピクセルにする)、データシェーダーでそれらをプロットできました。
私が立ち往生している点は、データフレーム全体を単一の線として接続するline()
代わりに、それらをプロットするだけであるということです。points()
グループごとにデータフレームグループのデータをプロットしたいと思います(グループは の名前ですlist_of_names
)キャンバスに線としてプロットします。
データはこちら
私はデータシェーダーでこの種の画像を取得します
これは、生成されたプロットのズームイン ビューです。目的は同じプロットを生成することですが、点ではなく接続された線を使用しますpoints()
。line()
import datashader as ds, pandas as pd, colorcet
import numby as np
df = pd.read_csv('file.csv')
print(df)
starlink_name = df.loc[:,'Name']
starlink_alt = df.loc[:,'starlink_alt']
starlink_az = df.loc[:,'starlink_az']
name = starlink_name.values
alt = starlink_alt.values
az = starlink_az.values
print(name)
print(df['Name'].nunique())
df['Date'] = pd.to_datetime(df['Date'])
for name, df_name in df.groupby('Name'):
print(name)
df_grouped = df.groupby('Name')
list_of_names = list(df_grouped.groups)
print(len(list_of_names))
#########################################################################################
#i want this kind of plot with connected lines with datashader
#########################################################################################
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8], polar=True)
# ax.invert_yaxis()
ax.set_theta_zero_location('N')
ax.set_rlim(90, 60, 1)
# Note: you must set the end of arange to be slightly larger than 90 or it won't include 90
ax.set_yticks(np.arange(0, 91, 15))
ax.set_rlim(bottom=90, top=0)
for name in list_of_names:
df2 = df_grouped.get_group(name)
ax.plot(np.deg2rad(df2['starlink_az']), df2['starlink_alt'], linestyle='solid', marker='.',linewidth=0.5, markersize=0.1)
plt.show()
print(df)
#########################################################################################
#transformation to cartasian coordiantes
#########################################################################################
df['starlink_alt'] = 90 - df['starlink_alt']
df['x'] = df.apply(lambda row: np.deg2rad(row.starlink_alt) * np.cos(np.deg2rad(row.starlink_az)), axis=1)
df['y'] = df.apply(lambda row: -1 * np.deg2rad(row.starlink_alt) * np.sin(np.deg2rad(row.starlink_az)), axis=1)
#########################################################################################
# this is what i want but as lines group per group
#########################################################################################
cvs = ds.Canvas(plot_width=2000, plot_height=2000)
agg = cvs.points(df, 'y', 'x')
img = ds.tf.shade(agg, cmap=colorcet.fire, how='eq_hist')
#########################################################################################
#here i am stuck
#########################################################################################
for name in list_of_names:
df2 = df_grouped.get_group(name)
cvs = ds.Canvas(plot_width=2000, plot_height=2000)
agg = cvs.line(df2, 'y', 'x')
img = ds.tf.shade(agg, cmap=colorcet.fire, how='eq_hist')
#plt.imshow(img)
plt.show()