グラフ エントロピーの定義に別の論文を使用することになりました:
複雑なネットワークの情報理論: 進化とアーキテクチャの制約について
RV ソールと S. バルベルデ (2004)
および
トポロジ構成に基づくネットワーク エントロピーとランダム ネットワークへのその計算
BH Wang、WX WangとT.周
それぞれを計算するコードは以下のとおりです。このコードは、自己ループのない無向で重みのないグラフがあることを前提としています。隣接行列を入力として取り、エントロピーの量をビット単位で返します。R で実装され、sna パッケージを使用します。
graphEntropy <- function(adj, type="SoleValverde") {
if (type == "SoleValverde") {
return(graphEntropySoleValverde(adj))
}
else {
return(graphEntropyWang(adj))
}
}
graphEntropySoleValverde <- function(adj) {
# Calculate Sole & Valverde, 2004 graph entropy
# Uses Equations 1 and 4
# First we need the denominator of q(k)
# To get it we need the probability of each degree
# First get the number of nodes with each degree
existingDegrees = degree(adj)/2
maxDegree = nrow(adj) - 1
allDegrees = 0:maxDegree
degreeDist = matrix(0, 3, length(allDegrees)+1) # Need an extra zero prob degree for later calculations
degreeDist[1,] = 0:(maxDegree+1)
for(aDegree in allDegrees) {
degreeDist[2,aDegree+1] = sum(existingDegrees == aDegree)
}
# Calculate probability of each degree
for(aDegree in allDegrees) {
degreeDist[3,aDegree+1] = degreeDist[2,aDegree+1]/sum(degreeDist[2,])
}
# Sum of all degrees mult by their probability
sumkPk = 0
for(aDegree in allDegrees) {
sumkPk = sumkPk + degreeDist[2,aDegree+1] * degreeDist[3,aDegree+1]
}
# Equivalent is sum(degreeDist[2,] * degreeDist[3,])
# Now we have all the pieces we need to calculate graph entropy
graphEntropy = 0
for(aDegree in 1:maxDegree) {
q.of.k = ((aDegree + 1)*degreeDist[3,aDegree+2])/sumkPk
# 0 log2(0) is defined as zero
if (q.of.k != 0) {
graphEntropy = graphEntropy + -1 * q.of.k * log2(q.of.k)
}
}
return(graphEntropy)
}
graphEntropyWang <- function(adj) {
# Calculate Wang, 2008 graph entropy
# Uses Equation 14
# bigN is simply the number of nodes
# littleP is the link probability. That is the same as graph density calculated by sna with gden().
bigN = nrow(adj)
littleP = gden(adj)
graphEntropy = 0
if (littleP != 1 && littleP != 0) {
graphEntropy = -1 * .5 * bigN * (bigN - 1) * (littleP * log2(littleP) + (1-littleP) * log2(1-littleP))
}
return(graphEntropy)
}