0

Tensorflow2 Custom Object Detector のトレーニング中に、トレーニング プロセスの評価に問題があります。この問題に関連するいくつかの問題を読んだ後、評価とトレーニングを 2 つの別個のプロセスとして扱う必要があることがわかりました。そのため、評価ジョブを開始するには新しい anaconda プロンプトを使用する必要があります。ssd_mobilenetv2 640x640 バージョンでトレーニングしています。私のパイプライン構成:

model {
  ssd {
    num_classes: 6
    image_resizer {
      fixed_shape_resizer {
        height: 640
        width: 640
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v2_fpn_keras"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 3.9999998989515007e-05
          }
        }
        initializer {
          random_normal_initializer {
            mean: 0.0
            stddev: 0.009999999776482582
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.996999979019165
          scale: true
          epsilon: 0.0010000000474974513
        }
      }
      use_depthwise: true
      override_base_feature_extractor_hyperparams: true
      fpn {
        min_level: 3
        max_level: 7
        additional_layer_depth: 128
      }
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      weight_shared_convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 3.9999998989515007e-05
            }
          }
          initializer {
            random_normal_initializer {
              mean: 0.0
              stddev: 0.009999999776482582
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.996999979019165
            scale: true
            epsilon: 0.0010000000474974513
          }
        }
        depth: 128
        num_layers_before_predictor: 4
        kernel_size: 3
        class_prediction_bias_init: -4.599999904632568
        share_prediction_tower: true
        use_depthwise: true
      }
    }
    anchor_generator {
      multiscale_anchor_generator {
        min_level: 3
        max_level: 7
        anchor_scale: 4.0
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        scales_per_octave: 2
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 9.99999993922529e-09
        iou_threshold: 0.6000000238418579
        max_detections_per_class: 100
        max_total_detections: 100
        use_static_shapes: false
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid_focal {
          gamma: 2.0
          alpha: 0.25
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    encode_background_as_zeros: true
    normalize_loc_loss_by_codesize: true
    inplace_batchnorm_update: true
    freeze_batchnorm: false
  }
}
train_config {
  batch_size: 4
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  #data_augmentation_options {
    #random_crop_image {
      #min_object_covered: 0.0
      #min_aspect_ratio: 0.75
      #max_aspect_ratio: 3.0
      #min_area: 0.75
      #max_area: 1.0
      #overlap_thresh: 0.0
    #}
  #}
  optimizer {
    momentum_optimizer {
      learning_rate {
        cosine_decay_learning_rate {
          learning_rate_base: 0.04999999821186066
          total_steps: 50000
          warmup_learning_rate: 0.0026666000485420227
          warmup_steps: 600
        }
      }
      momentum_optimizer_value: 0.8999999761581421
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "pre-trained-models\ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8\checkpoint\ckpt-0"
  num_steps: 50000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
  fine_tune_checkpoint_type: "detection"
  fine_tune_checkpoint_version: V2
  from_detection_checkpoint: true
}
train_input_reader {
  label_map_path: "annotations/label_map.pbtxt"
  tf_record_input_reader {
    input_path: "data/train.record"
  }
 
}
eval_config {
  metrics_set: "coco_detection_metrics"
  use_moving_averages: false
}
eval_input_reader {
  label_map_path: "annotations/label_map.pbtxt"
  shuffle: false
  num_epochs: 1
  tf_record_input_reader {
    input_path: "data/test.record"
  }
}

次のコマンドでトレーニングを開始しました。

python model_main_tf2.py --model_dir=models/my_ssd2_3/ --pipeline_config_path=models/my_ssd2_3/pipeline.config --sample_1_of_n_eval_examples 1 --logtostderr

評価例数を設定することで、評価作業を開始する効果があることを期待していました。いずれにせよ、別のターミナル ウィンドウで評価を実行しようとしました:python model_main_tf2.py --model_dir=models/my_ssd2_3 --pipeline_config_path=models/my_ssd2_3/pipeline.config --checkpoint_dir=models/my_ssd2_3/ --alsologtostderr
評価を開始するとすぐに、トレーニング ジョブが次のエラーでクラッシュします:エラー

十分なハードウェアを持っていないと思う問題:

  1. 8GBのRAM
  2. NVIDIDA GTX960M (2GB RAM)

私が使用するすべての入力画像が 3000x3000 であるため、プリプロセッサがロードしなければならない情報が多すぎることが問題になる可能性はありますか? もしそうなら、それを回避する方法はありますか?すべての画像のラベルを付け直す必要があるため、TF レコード ファイルを生成する前にすべての画像のサイズを変更したくありません。トレーニングプロセスの開始時にメモリがどのように割り当てられているかについての洞察が明らかに不足しているため、詳細を教えていただければ幸いです。


2 番目の質問は、テンソルボードでトレーニングを監視しているときに、さまざまな明るさで画像が表示されることです。model_lib_v2.py ファイルの 627 行を次のように変更しようとしました。

data= (features[fields.InputDataFields.image]-np.min(features[fields.InputDataFields.image]))/(np.max(features[fields.InputDataFields.image])-np.min(features[fields.InputDataFields.image]))
,

この解決策によると: https://github.com/tensorflow/models/issues/9115 運が悪い。この問題の解決策はありますか? また、モデルが提案するバウンディング ボックスをそこで監視できればいいと思います。ありがとうございました。

4

1 に答える 1