ジオメトリ データを含むデータセット内の他の 2 つの列を使用して双方向にフィルター処理できる移動経路を示すリーフレット マップを含む Shiny アプリを構築しようとしています。
そのために、双方向/相互依存フィルタリングを可能にする selectizeGroupUI (shinyWidgets パッケージ) を使用しようとしています。
ただし、コードを実行すると、次のエラーが発生します。
「警告: polygonData.default のエラー: クラス data.frame のオブジェクトからパス データを取得する方法がわかりません」
これは、リーフレット マップでパス (ラインストリング) データをマッピングするには、基礎となるデータセットが sf オブジェクトである必要があるのに対し、selectizeGroupUI は sf オブジェクトを data.table(?) に変換するため、エラー メッセージが表示されるためだと感じています。
これは、データセットを sf オブジェクトから data.table に変換し、パスを個々の A 座標と B 座標 (接続線なし) としてプロットしようとすると、すべてが完全に機能するという事実によってサポートされます。
回避策が存在するかどうか、何か考えはありますか?
どんな助けでも大歓迎です、お願いします、そしてありがとう!
レプレックス:
library(tidyverse)
library(sf)
library(shiny)
library(shinyWidgets)
# generate the table with geometry data
geo_data <- structure(list(idx = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
start_lat = c(33.40693,33.64672, 33.57127, 33.42848, 33.54936, 33.53418, 33.60399, 33.49554,33.5056, 33.61696),
start_long = c(-112.0298, -111.9255, -112.049,-112.0998, -112.0912, -112.0911, -111.9273, -111.9687, -112.0563, -111.9866),
end_lat = c(33.40687, 33.64776, 33.57125, 33.42853,33.54893, 33.53488, 33.60401, 33.49647, 33.5056, 33.61654),
end_long = c(-112.0343,-111.9303, -112.0481, -112.0993, -112.0912, -112.0911, -111.931,-111.9711, -112.0541, -111.986)),
row.names = c(NA, -10L), spec = structure(list(cols = list(idx = structure(list(), class = c("collector_double","collector")),
start_lat = structure(list(), class = c("collector_double", "collector")),
start_long = structure(list(), class = c("collector_double", "collector")),
end_lat = structure(list(), class = c("collector_double", "collector")),
end_long = structure(list(), class = c("collector_double","collector"))),
default = structure(list(), class = c("collector_guess","collector")), delim = ","),
class = "col_spec"),class = c("data.table","data.frame"))
geo_data<- setDT(geo_data)
geo_data <- geo_data[
, {
geometry <- sf::st_linestring(x = matrix(c(start_lat, start_long, end_long, end_long), ncol = 2, byrow = T))
geometry <- sf::st_sfc(geometry)
geometry <- sf::st_sf(geometry = geometry)
}
, by = idx
]
# generate the table with columns to filter the geometry data, join with geometry data and convert to sf
table <- structure(list(idx = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
column1 = c("A", "A", "A", "B", "B", "B", "C", "C", "C", "C"),
column2 = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)), row.names = c(NA, -10L),
class = c("tbl_df","tbl", "data.frame")) %>%
left_join(x = ., y = geo_data, by = "idx", keep = FALSE)
sf <- sf::st_as_sf(table)
# Shiny
ui <- fluidPage(
fluidRow(
column(
width = 10, offset = 1,
tags$h3("Filter data with selectize group"),
panel(
selectizeGroupUI(
id = "my-filters",
params = list(
column1 = list(inputId = "column1", title = "column1:"),
column2 = list(inputId = "column2", title = "column2:")
)
), status = "primary"
),
leafletOutput(outputId = "map")
)
)
)
server <- function(input, output, session) {
res_mod <- callModule(
module = selectizeGroupServer,
id = "my-filters",
data = sf,
vars = c("column1", "column2"))
output$map <- renderLeaflet({
leaflet() %>%
addPolylines(data = res_mod())
})
}
shinyApp(ui, server)