max_lag は、すべてのメディアの固定整数です。メディアごとに特定のラグが必要です。では、メディアごとに異なるラグを設定するにはどうすればよいでしょうか? また、データとパラメーターをどのように構文に変更する必要があるのでしょうか? 例: max_lag_channel_media1 = 10; max_lag_channel_media2 = 4; max_lag_channel_media3 = 6
model_data2 = {
'N': len(df),
'max_lag': max_lag,
'num_media': num_media,
'X_media': X_media,
'mu_mdip': mu_mdip,
'num_ctrl': X_ctrl.shape[1],
'X_ctrl': X_ctrl,
'y': df_mmm['sales'].values
}
model_code2 = '''
functions {
// the adstock transformation with a vector of weights
real Adstock(vector t, row_vector weights) {
return dot_product(t, weights) / sum(weights);
}
}
data {
// the total number of observations
int<lower=1> N;
// the vector of sales
real y[N];
// the maximum duration of lag effect, in weeks
int<lower=1> max_lag;
// the number of media channels
int<lower=1> num_media;
// matrix of media variables
matrix[N+max_lag-1, num_media] X_media;
// vector of media variables' mean
real mu_mdip[num_media];
// the number of other control variables
int<lower=1> num_ctrl;
// a matrix of control variables
matrix[N, num_ctrl] X_ctrl;
}
parameters {
// residual variance
real<lower=0> noise_var;
// the intercept
real tau;
// the coefficients for media variables and base sales
vector<lower=0>[num_media+num_ctrl] beta;
// the decay and peak parameter for the adstock transformation of
// each media
vector<lower=0,upper=1>[num_media] decay;
vector<lower=0,upper=ceil(max_lag/2)>[num_media] peak;
}
transformed parameters {
// the cumulative media effect after adstock
real cum_effect;
// matrix of media variables after adstock
matrix[N, num_media] X_media_adstocked;
// matrix of all predictors
matrix[N, num_media+num_ctrl] X;
// adstock, mean-center, log1p transformation
row_vector[max_lag] lag_weights;
for (nn in 1:N) {
for (media in 1 : num_media) {
for (lag in 1 : max_lag) {
lag_weights[max_lag-lag+1] <- pow(decay[media], (lag - 1 - peak[media]) ^ 2);
}
cum_effect <- Adstock(sub_col(X_media, nn, media, max_lag), lag_weights);
X_media_adstocked[nn, media] <- log1p(cum_effect/mu_mdip[media]);
}
X <- append_col(X_media_adstocked, X_ctrl);
}
}
model {
decay ~ beta(3,3);
peak ~ uniform(0, ceil(max_lag/2));
tau ~ normal(0, 5);
for (i in 1 : num_media+num_ctrl) {
beta[i] ~ normal(0, 1);
}
noise_var ~ inv_gamma(0.05, 0.05 * 0.01);
y ~ normal(tau + X * beta, sqrt(noise_var));
}
'''