25

特定の種類のデータから分割表を作成しようとしています。これはループなどで実行できます...しかし、最終テーブルには10E5を超えるセルが含まれるため、既存の関数を探しています。

私の初期データは次のとおりです。

PLANT                  ANIMAL                          INTERACTIONS
---------------------- ------------------------------- ------------
Tragopogon_pratensis   Propylea_quatuordecimpunctata         1
Anthriscus_sylvestris  Rhagonycha_nigriventris               3
Anthriscus_sylvestris  Sarcophaga_carnaria                   2
Heracleum_sphondylium  Sarcophaga_carnaria                   1
Anthriscus_sylvestris  Sarcophaga_variegata                  4
Anthriscus_sylvestris  Sphaerophoria_interrupta_Gruppe       3
Cerastium_holosteoides Sphaerophoria_interrupta_Gruppe       1

次のようなテーブルを作成したいと思います。

                       Propylea_quatuordecimpunctata Rhagonycha_nigriventris Sarcophaga_carnaria Sarcophaga_variegata Sphaerophoria_interrupta_Gruppe
---------------------- ----------------------------- ----------------------- ------------------- -------------------- -------------------------------
Tragopogon_pratensis   1                             0                       0                   0                    0
Anthriscus_sylvestris  0                             3                       2                   4                    3
Heracleum_sphondylium  0                             0                       1                   0                    0
Cerastium_holosteoides 0                             0                       0                   0                    1

つまり、すべての植物種が行に、すべての動物種が列にあり、相互作用がない場合もあります (私の最初のデータでは、発生した相互作用のみがリストされています)。

4

6 に答える 6

34

ベース R では、tableorを使用しxtabsます。

with(warpbreaks, table(wool, tension))

    tension
wool L M H
   A 9 9 9
   B 9 9 9

xtabs(~wool+tension, data=warpbreaks)

    tension
wool L M H
   A 9 9 9
   B 9 9 9

gmodelsパッケージには、CrossTableSPSS または SAS のユーザーが期待するものと同様の出力を提供する機能があります。

library(gmodels)
with(warpbreaks, CrossTable(wool, tension))


   Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|


Total Observations in Table:  54 


             | tension 
        wool |         L |         M |         H | Row Total | 
-------------|-----------|-----------|-----------|-----------|
           A |         9 |         9 |         9 |        27 | 
             |     0.000 |     0.000 |     0.000 |           | 
             |     0.333 |     0.333 |     0.333 |     0.500 | 
             |     0.500 |     0.500 |     0.500 |           | 
             |     0.167 |     0.167 |     0.167 |           | 
-------------|-----------|-----------|-----------|-----------|
           B |         9 |         9 |         9 |        27 | 
             |     0.000 |     0.000 |     0.000 |           | 
             |     0.333 |     0.333 |     0.333 |     0.500 | 
             |     0.500 |     0.500 |     0.500 |           | 
             |     0.167 |     0.167 |     0.167 |           | 
-------------|-----------|-----------|-----------|-----------|
Column Total |        18 |        18 |        18 |        54 | 
             |     0.333 |     0.333 |     0.333 |           | 
-------------|-----------|-----------|-----------|-----------|
于 2011-09-16T09:06:40.170 に答える
9

関数を使用せずに Andrie が投稿したのと同じ結果を取得できることを指摘したいと思いますwith

R基本パッケージ

# 3 options
table(warpbreaks[, 2:3])
table(warpbreaks[, c("wool", "tension")])
table(warpbreaks$wool, warpbreaks$tension, dnn = c("wool", "tension"))

    tension
wool L M H
   A 9 9 9
   B 9 9 9

パッケージ gmodels:

library(gmodels)
# 2 options    
CrossTable(warpbreaks$wool, warpbreaks$tension)
CrossTable(warpbreaks$wool, warpbreaks$tension, dnn = c("Wool", "Tension"))


   Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|


Total Observations in Table:  54 


                | warpbreaks$tension 
warpbreaks$wool |         L |         M |         H | Row Total | 
----------------|-----------|-----------|-----------|-----------|
              A |         9 |         9 |         9 |        27 | 
                |     0.000 |     0.000 |     0.000 |           | 
                |     0.333 |     0.333 |     0.333 |     0.500 | 
                |     0.500 |     0.500 |     0.500 |           | 
                |     0.167 |     0.167 |     0.167 |           | 
----------------|-----------|-----------|-----------|-----------|
              B |         9 |         9 |         9 |        27 | 
                |     0.000 |     0.000 |     0.000 |           | 
                |     0.333 |     0.333 |     0.333 |     0.500 | 
                |     0.500 |     0.500 |     0.500 |           | 
                |     0.167 |     0.167 |     0.167 |           | 
----------------|-----------|-----------|-----------|-----------|
   Column Total |        18 |        18 |        18 |        54 | 
                |     0.333 |     0.333 |     0.333 |           | 
----------------|-----------|-----------|-----------|-----------|
于 2015-05-18T08:17:18.380 に答える
7

ベース R の xtabs は機能するはずです。たとえば、次のようになります。

dat <- data.frame(PLANT = c("p1", "p2", "p2", "p4", "p5", "p5", "p6"),
                  ANIMAL = c("a1", "a2", "a3", "a3", "a4", "a5", "a5"),
                  INTERACTIONS = c(1,3,2,1,4,3,1),
                  stringsAsFactors = FALSE)

(x2.table <- xtabs(dat$INTERACTIONS ~ dat$PLANT + dat$ANIMAL))

     dat$ANIMAL
dat$PLANT a1 a2 a3 a4 a5
       p1  1  0  0  0  0
       p2  0  3  2  0  0
       p4  0  0  1  0  0
       p5  0  0  0  4  3
       p6  0  0  0  0  1

chisq.test(x2.table, simulate.p.value = TRUE)

それはあなたが探していることをかなり簡単に行うべきだと思います。効率の点で 10E5 分割表にどのようにスケールアップするかはわかりませんが、統計的には別の問題かもしれません。

于 2013-12-26T05:26:42.400 に答える
3

" " パッケージdcast()の関数を使用するだけです:reshape2

ans = dcast( df, PLANT~ ANIMAL,value.var = "INTERACTIONS", fill = 0 ) 

ここで、"PLANT" は左側の列に、"ANIMALS" は一番上の行に表示されます。テーブルの入力は "INTERACTIONS" を使用して行われ、"NULL" 値は 0 を使用して入力されます。

于 2016-09-30T07:14:58.243 に答える