カーネルで展開ループを 8 から 9 に増やすと、out of resources
エラーで中断します。
リソース不足による CUDA の起動失敗を診断するにはどうすればよいですか?を読みました。パラメータの不一致とレジスタの使いすぎが問題になる可能性がありますが、ここではそうではないようです。
n
私のカーネルは、点と重心の間の距離を計算し、m
各点について最も近い重心を選択します。8 次元では機能しますが、9 次元では機能しません。dimensions=9
距離計算のために 2 行を設定してコメントを外すと、pycuda._driver.LaunchError: cuLaunchGrid failed: launch out of resources
.
この動作の原因は何だと思いますか? out of resources
*の原因となるその他の iusses は何ですか?
Quadro FX580 を使用しています。これが最小限の(っぽい)例です。実際のコードで展開するには、テンプレートを使用します。
import numpy as np
from pycuda import driver, compiler, gpuarray, tools
import pycuda.autoinit
## preference
np.random.seed(20)
points = 512
dimensions = 8
nclusters = 1
## init data
data = np.random.randn(points,dimensions).astype(np.float32)
clusters = data[:nclusters]
## init cuda
kernel_code = """
// the kernel definition
__device__ __constant__ float centroids[16384];
__global__ void kmeans_kernel(float *idata,float *g_centroids,
int * cluster, float *min_dist, int numClusters, int numDim) {
int valindex = blockIdx.x * blockDim.x + threadIdx.x ;
float increased_distance,distance, minDistance;
minDistance = 10000000 ;
int nearestCentroid = 0;
for(int k=0;k<numClusters;k++){
distance = 0.0;
increased_distance = idata[valindex*numDim] -centroids[k*numDim];
distance = distance +(increased_distance * increased_distance);
increased_distance = idata[valindex*numDim+1] -centroids[k*numDim+1];
distance = distance +(increased_distance * increased_distance);
increased_distance = idata[valindex*numDim+2] -centroids[k*numDim+2];
distance = distance +(increased_distance * increased_distance);
increased_distance = idata[valindex*numDim+3] -centroids[k*numDim+3];
distance = distance +(increased_distance * increased_distance);
increased_distance = idata[valindex*numDim+4] -centroids[k*numDim+4];
distance = distance +(increased_distance * increased_distance);
increased_distance = idata[valindex*numDim+5] -centroids[k*numDim+5];
distance = distance +(increased_distance * increased_distance);
increased_distance = idata[valindex*numDim+6] -centroids[k*numDim+6];
distance = distance +(increased_distance * increased_distance);
increased_distance = idata[valindex*numDim+7] -centroids[k*numDim+7];
distance = distance +(increased_distance * increased_distance);
//increased_distance = idata[valindex*numDim+8] -centroids[k*numDim+8];
//distance = distance +(increased_distance * increased_distance);
if(distance <minDistance) {
minDistance = distance ;
nearestCentroid = k;
}
}
cluster[valindex]=nearestCentroid;
min_dist[valindex]=sqrt(minDistance);
}
"""
mod = compiler.SourceModule(kernel_code)
centroids_adrs = mod.get_global('centroids')[0]
kmeans_kernel = mod.get_function("kmeans_kernel")
clusters_gpu = gpuarray.to_gpu(clusters)
cluster = gpuarray.zeros(points, dtype=np.int32)
min_dist = gpuarray.zeros(points, dtype=np.float32)
driver.memcpy_htod(centroids_adrs,clusters)
distortion = gpuarray.zeros(points, dtype=np.float32)
block_size= 512
## start kernel
kmeans_kernel(
driver.In(data),driver.In(clusters),cluster,min_dist,
np.int32(nclusters),np.int32(dimensions),
grid = (points/block_size,1),
block = (block_size, 1, 1),
)
print cluster
print min_dist