36

PythonでIDL関数を再実装しようとしています:

http://star.pst.qub.ac.uk/idl/REBIN.html

これは、平均化によって2次元配列を整数倍に縮小します。

例えば:

>>> a=np.arange(24).reshape((4,6))
>>> a
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23]])

関連するサンプルの平均をとって (2,3) にサイズ変更したいと思います。予想される出力は次のようになります。

>>> b = rebin(a, (2, 3))
>>> b
array([[  3.5,   5.5,  7.5],
       [ 15.5, 17.5,  19.5]])

すなわちb[0,0] = np.mean(a[:2,:2]), b[0,1] = np.mean(a[:2,2:4])、など。

私は 4 次元配列に再形成し、正しいスライスで平均を取るべきだと信じていますが、アルゴリズムを理解できませんでした。何かヒントはありますか?

4

4 に答える 4

41

リンクした回答に基づく例を次に示します(明確にするため):

>>> import numpy as np
>>> a = np.arange(24).reshape((4,6))
>>> a
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23]])
>>> a.reshape((2,a.shape[0]//2,3,-1)).mean(axis=3).mean(1)
array([[  3.5,   5.5,   7.5],
       [ 15.5,  17.5,  19.5]])

関数として:

def rebin(a, shape):
    sh = shape[0],a.shape[0]//shape[0],shape[1],a.shape[1]//shape[1]
    return a.reshape(sh).mean(-1).mean(1)
于 2011-11-11T06:53:37.340 に答える
15

JF Sebastian は 2D ビニングについて素晴らしい答えを出しています。これは、N 次元で機能する彼の "rebin" 関数のバージョンです。

def bin_ndarray(ndarray, new_shape, operation='sum'):
    """
    Bins an ndarray in all axes based on the target shape, by summing or
        averaging.

    Number of output dimensions must match number of input dimensions and 
        new axes must divide old ones.

    Example
    -------
    >>> m = np.arange(0,100,1).reshape((10,10))
    >>> n = bin_ndarray(m, new_shape=(5,5), operation='sum')
    >>> print(n)

    [[ 22  30  38  46  54]
     [102 110 118 126 134]
     [182 190 198 206 214]
     [262 270 278 286 294]
     [342 350 358 366 374]]

    """
    operation = operation.lower()
    if not operation in ['sum', 'mean']:
        raise ValueError("Operation not supported.")
    if ndarray.ndim != len(new_shape):
        raise ValueError("Shape mismatch: {} -> {}".format(ndarray.shape,
                                                           new_shape))
    compression_pairs = [(d, c//d) for d,c in zip(new_shape,
                                                  ndarray.shape)]
    flattened = [l for p in compression_pairs for l in p]
    ndarray = ndarray.reshape(flattened)
    for i in range(len(new_shape)):
        op = getattr(ndarray, operation)
        ndarray = op(-1*(i+1))
    return ndarray
于 2015-03-13T21:13:35.687 に答える
5

これは、古い配列の次元を分割するために新しい配列の次元を必要としない行列乗算を使用して、あなたが求めていることを行う方法です。

まず、行圧縮行列と列圧縮行列を生成します (numpy 操作だけを使用しても、これを行うためのよりクリーンな方法があると確信しています)。

def get_row_compressor(old_dimension, new_dimension):
    dim_compressor = np.zeros((new_dimension, old_dimension))
    bin_size = float(old_dimension) / new_dimension
    next_bin_break = bin_size
    which_row = 0
    which_column = 0
    while which_row < dim_compressor.shape[0] and which_column < dim_compressor.shape[1]:
        if round(next_bin_break - which_column, 10) >= 1:
            dim_compressor[which_row, which_column] = 1
            which_column += 1
        elif next_bin_break == which_column:

            which_row += 1
            next_bin_break += bin_size
        else:
            partial_credit = next_bin_break - which_column
            dim_compressor[which_row, which_column] = partial_credit
            which_row += 1
            dim_compressor[which_row, which_column] = 1 - partial_credit
            which_column += 1
            next_bin_break += bin_size
    dim_compressor /= bin_size
    return dim_compressor


def get_column_compressor(old_dimension, new_dimension):
    return get_row_compressor(old_dimension, new_dimension).transpose()

...たとえば、次のようになりget_row_compressor(5, 3)ます。

[[ 0.6  0.4  0.   0.   0. ]
 [ 0.   0.2  0.6  0.2  0. ]
 [ 0.   0.   0.   0.4  0.6]]

そしてあなたにget_column_compressor(3, 2)与えます:

[[ 0.66666667  0.        ]
 [ 0.33333333  0.33333333]
 [ 0.          0.66666667]]

次に、単純に行コンプレッサを事前に乗算し、列コンプレッサを事後乗算して、圧縮された行列を取得します。

def compress_and_average(array, new_shape):
    # Note: new shape should be smaller in both dimensions than old shape
    return np.mat(get_row_compressor(array.shape[0], new_shape[0])) * \
           np.mat(array) * \
           np.mat(get_column_compressor(array.shape[1], new_shape[1]))

このテクニックを使って、

compress_and_average(np.array([[50, 7, 2, 0, 1],
                               [0, 0, 2, 8, 4],
                               [4, 1, 1, 0, 0]]), (2, 3))

収量:

[[ 21.86666667   2.66666667   2.26666667]
 [  1.86666667   1.46666667   1.86666667]]
于 2016-06-20T08:35:02.470 に答える
3

私はラスターを縮小しようとしていました.約6000 x 2000サイズのラスターを取り、それを任意のサイズの小さなラスターに変えて、以前のビンサイズ全体で値を適切に平均化しました. SciPy を使用した解決策を見つけましたが、使用していた共有ホスティング サービスに SciPy をインストールできなかったため、代わりにこの関数を作成しました。行と列をループすることを含まない、これを行うためのより良い方法がある可能性がありますが、これはうまくいくようです。

これの良いところは、古い行数と列数が新しい行数と列数で割り切れる必要がないことです。

def resize_array(a, new_rows, new_cols): 
    '''
    This function takes an 2D numpy array a and produces a smaller array 
    of size new_rows, new_cols. new_rows and new_cols must be less than 
    or equal to the number of rows and columns in a.
    '''
    rows = len(a)
    cols = len(a[0])
    yscale = float(rows) / new_rows 
    xscale = float(cols) / new_cols

    # first average across the cols to shorten rows    
    new_a = np.zeros((rows, new_cols)) 
    for j in range(new_cols):
        # get the indices of the original array we are going to average across
        the_x_range = (j*xscale, (j+1)*xscale)
        firstx = int(the_x_range[0])
        lastx = int(the_x_range[1])
        # figure out the portion of the first and last index that overlap
        # with the new index, and thus the portion of those cells that 
        # we need to include in our average
        x0_scale = 1 - (the_x_range[0]-int(the_x_range[0]))
        xEnd_scale =  (the_x_range[1]-int(the_x_range[1]))
        # scale_line is a 1d array that corresponds to the portion of each old
        # index in the_x_range that should be included in the new average
        scale_line = np.ones((lastx-firstx+1))
        scale_line[0] = x0_scale
        scale_line[-1] = xEnd_scale
        # Make sure you don't screw up and include an index that is too large
        # for the array. This isn't great, as there could be some floating
        # point errors that mess up this comparison.
        if scale_line[-1] == 0:
            scale_line = scale_line[:-1]
            lastx = lastx - 1
        # Now it's linear algebra time. Take the dot product of a slice of
        # the original array and the scale_line
        new_a[:,j] = np.dot(a[:,firstx:lastx+1], scale_line)/scale_line.sum()

    # Then average across the rows to shorten the cols. Same method as above.
    # It is probably possible to simplify this code, as this is more or less
    # the same procedure as the block of code above, but transposed.
    # Here I'm reusing the variable a. Sorry if that's confusing.
    a = np.zeros((new_rows, new_cols))
    for i in range(new_rows):
        the_y_range = (i*yscale, (i+1)*yscale)
        firsty = int(the_y_range[0])
        lasty = int(the_y_range[1])
        y0_scale = 1 - (the_y_range[0]-int(the_y_range[0]))
        yEnd_scale =  (the_y_range[1]-int(the_y_range[1]))
        scale_line = np.ones((lasty-firsty+1))
        scale_line[0] = y0_scale
        scale_line[-1] = yEnd_scale
        if scale_line[-1] == 0:
            scale_line = scale_line[:-1]
            lasty = lasty - 1
        a[i:,] = np.dot(scale_line, new_a[firsty:lasty+1,])/scale_line.sum() 

    return a 
于 2016-03-25T17:24:00.830 に答える