AIX (および HPUX) には msemaphores と呼ばれる優れた小さな機能があり、複数のプロセスで共有されるメモリ マップ ファイルの細かい部分 (レコードなど) を簡単に同期できます。Linuxで同等のものを知っている人はいますか?
明確にするために、msemaphore 関数については、関連するリンクをたどって説明しています。
sem_init(3)
の 2 番目の引数" pshared
" が true の場合、 POSIX セマフォはプロセス間で共有されるメモリに配置できます。これは、することと同じようmsem
です。
#include <semaphore.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
int main() {
void *shared;
sem_t *sem;
int counter, *data;
pid_t pid;
srand(time(NULL));
shared = mmap(NULL, sysconf(_SC_PAGE_SIZE), PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);
sem_init(sem = shared, 1, 1);
data = shared + sizeof(sem_t);
counter = *data = 0;
pid = fork();
while (1) {
sem_wait(sem);
if (pid)
printf("ping>%d %d\n", data[0] = rand(), data[1] = rand());
else if (counter != data[0]) {
printf("pong<%d", counter = data[0]);
sleep(2);
printf(" %d\n", data[1]);
}
sem_post(sem);
if (pid) sleep(1);
}
}
これはかなりばかげたテストですが、機能します。
$ cc -o test -lrt test.c
$ ./test
ping>2098529942 315244699
pong<2098529942 315244699
pong<1195826161 424832009
ping>1195826161 424832009
pong<1858302907 1740879454
ping>1858302907 1740879454
ping>568318608 566229809
pong<568318608 566229809
ping>1469118213 999421338
pong<1469118213 999421338
ping>1247594672 1837310825
pong<1247594672 1837310825
ping>478016018 1861977274
pong<478016018 1861977274
ping>1022490459 935101133
pong<1022490459 935101133
...
セマフォは 2 つのプロセス間で共有されるため、 はからインタリーブpong
されたデータを取得しません。ping
sleep
これは、POSIX 共有メモリ ミューテックスを使用して実行できます。
pthread_mutexattr_t attr;
int pshared = PTHREAD_PROCESS_SHARED;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, &pshared);
pthread_mutex_init(&some_shared_mmap_structure.mutex, &attr);
pthread_mutexattr_destroy(&attr);
&some_shared_mmap_structure.mutex をマップされた複数のプロセスから、通常の pthread_mutex_lock() などの呼び出しを使用してロック解除およびロックできるようになりました。
実際、次の点で msem API を実装することもできます: (未テスト)
struct msemaphore {
pthread_mutex_t mut;
};
#define MSEM_LOCKED 1
#define MSEM_UNLOCKED 0
#define MSEM_IF_NOWAIT 1
msemaphore *msem_init(msemaphore *msem_p, int initialvalue) {
pthread_mutex_attr_t attr;
int pshared = PTHREAD_PROCESS_SHARED;
assert((unsigned long)msem_p & 7 == 0); // check alignment
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, &pshared); // might fail, you should probably check
pthread_mutex_init(&msem_p->mut, &attr); // never fails
pthread_mutexattr_destroy(&attr);
if (initialvalue)
pthread_mutex_lock(&attr);
return msem_p;
}
int msem_remove(msemaphore *msem) {
return pthread_mutex_destroy(&msem->mut) ? -1 : 0;
}
int msem_lock(msemaphore *msem, int cond) {
int ret;
if (cond == MSEM_IF_NOWAIT)
ret = pthread_mutex_trylock(&msem->mut);
else
ret = pthread_mutex_lock(&msem->mut);
return ret ? -1 : 0;
}
int msem_unlock(msemaphore *msem, int cond) {
// pthreads does not allow us to directly ascertain whether there are
// waiters. However, a unlock/trylock with no contention is -very- fast
// using linux's pthreads implementation, so just do that instead if
// you care.
//
// nb, only fails if the mutex is not initialized
return pthread_mutex_unlock(&msem->mut) ? -1 : 0;
}
Linux では、SysV 共有メモリを使用して目的を達成できる場合があります。簡単なグーグル検索で、この(かなり古い)ガイドが役立つ可能性があります。