2

(ビジュアル) C++の世界。私はツリー構造を持っています。それを視覚化したいです。すなわち:

木のデータがあります。このデータを処理し、各ノードの座標 (任意の論理座標空間、たとえば 2000x2000 論理ピクセル) を計算するライブラリと、それらを接続する各線のライブラリが必要です。2 つのノードを結ぶ線は、単純な直線ではなく、曲線または直線セグメントで構成されるパスのようなものである可能性があります。理想的には、ユーザーがノードをドラッグして再配置する場合に備えて、特定のツリー ノードの座標についてもパスを定義する線を計算したいと考えています。

まもなく、特定のグラフに必要なすべての幾何学的座標を計算するライブラリが必要になります。次に、これらの座標を使用して、GDI を使用して必要に応じてグラフを描画します。

Graphviz、ドット言語などについて聞いたことがあります。しかし、それ (または OGDF や igraph などの代替手段) が私が望むことを実行できるかどうかはわかりません。私が達成したいアイデアは、グラフを自分でレンダリングすることですが、座標を生成する際に支援が必要です。また、ユーザーはノードを再配置できる必要があるため、再配置されたノードを接続するライン パスの再計算が可能である必要があります。たとえば、ラインが既存のノードと交差しないようにする必要があります。

4

1 に答える 1

4

はい、graphviz はこれを行うことができます。

有向グラフをレイアウトする

に次のグラフがあるとしますtree.gv

digraph g{
  a[label="I"];
  b[label="am"];
  c[label="a"];
  d[label="tree"];
  e[label="with"];
  f[label="7"];
  g[label="nodes"];

  a -> b -> c;
  b -> d -> e;
  d -> f;
  d -> g;
}

dotこのグラフをレイアウトできますdot tree.gv:

digraph g {
    node [label="\N"];
    graph [bb="0,0,208,252"];
    a [label=I, pos="63,234", width="0.75", height="0.5"];
    b [label=am, pos="63,162", width="0.75", height="0.5"];
    c [label=a, pos="27,90", width="0.75", height="0.5"];
    d [label=tree, pos="99,90", width="0.75", height="0.5"];
    e [label=with, pos="27,18", width="0.75", height="0.5"];
    f [label=7, pos="99,18", width="0.75", height="0.5"];
    g [label=nodes, pos="176,18", width="0.89579", height="0.5"];
    a -> b [pos="e,63,180.1 63,215.7 63,207.98 63,198.71 63,190.11"];
    b -> c [pos="e,35.304,107.15 54.65,144.76 50.288,136.28 44.853,125.71 39.959,116.2"];
    b -> d [pos="e,90.696,107.15 71.35,144.76 75.712,136.28 81.147,125.71 86.041,116.2"];
    d -> e [pos="e,41.796,33.385 84.43,74.834 74.25,64.938 60.476,51.546 48.969,40.359"];
    d -> f [pos="e,99,36.104 99,71.697 99,63.983 99,54.712 99,46.112"];
    d -> g [pos="e,159.91,33.626 114.58,74.834 125.4,65.003 140,51.723 152.26,40.582"];
}

すべての座標は出力で見つけることができます。グラフの描画方法についてさらに詳細が必要な場合は、次のxdot形式を使用してみてください。dot -Txdot tree.gv

digraph g {
    node [label="\N"];
    graph [bb="0,0,208,252",
        _draw_="c 9 -#ffffffff C 9 -#ffffffff P 4 0 -1 0 252 209 252 209 -1 ",
        xdotversion="1.2"];
    a [label=I, pos="63,234", width="0.75", height="0.5", _draw_="c 9 -#000000ff e 63 234 27 18 ", _ldraw_="F 14.000000 11 -Times-Roman c 9 -#000000ff T 63 228 0 5 1 -I "];
    b [label=am, pos="63,162", width="0.75", height="0.5", _draw_="c 9 -#000000ff e 63 162 27 18 ", _ldraw_="F 14.000000 11 -Times-Roman c 9 -#000000ff T 63 156 0 17 2 -am "];
    c [label=a, pos="27,90", width="0.75", height="0.5", _draw_="c 9 -#000000ff e 27 90 27 18 ", _ldraw_="F 14.000000 11 -Times-Roman c 9 -#000000ff T 27 84 0 7 1 -a "];
    d [label=tree, pos="99,90", width="0.75", height="0.5", _draw_="c 9 -#000000ff e 99 90 27 18 ", _ldraw_="F 14.000000 11 -Times-Roman c 9 -#000000ff T 99 84 0 21 4 -tree "];
    e [label=with, pos="27,18", width="0.75", height="0.5", _draw_="c 9 -#000000ff e 27 18 27 18 ", _ldraw_="F 14.000000 11 -Times-Roman c 9 -#000000ff T 27 12 0 24 4 -with "];
    f [label=7, pos="99,18", width="0.75", height="0.5", _draw_="c 9 -#000000ff e 99 18 27 18 ", _ldraw_="F 14.000000 11 -Times-Roman c 9 -#000000ff T 99 12 0 7 1 -7 "];
    g [label=nodes, pos="176,18", width="0.89579", height="0.5", _draw_="c 9 -#000000ff e 176 18 32 18 ", _ldraw_="F 14.000000 11 -Times-Roman c 9 -#000000ff T 176 12 0 34 5 -nodes "];
    a -> b [pos="e,63,180.1 63,215.7 63,207.98 63,198.71 63,190.11", _draw_="c 9 -#000000ff B 4 63 216 63 208 63 199 63 190 ", _hdraw_="S 5 -solid c 9 -#000000ff C 9 -#000000ff P 3 67 190 63 180 60 190 "];
    b -> c [pos="e,35.304,107.15 54.65,144.76 50.288,136.28 44.853,125.71 39.959,116.2", _draw_="c 9 -#000000ff B 4 55 145 50 136 45 126 40 116 ", _hdraw_="S 5 -solid c 9 -#000000ff C 9 -#000000ff P 3 43 114 35 107 37 118 "];
    b -> d [pos="e,90.696,107.15 71.35,144.76 75.712,136.28 81.147,125.71 86.041,116.2", _draw_="c 9 -#000000ff B 4 71 145 76 136 81 126 86 116 ", _hdraw_="S 5 -solid c 9 -#000000ff C 9 -#000000ff P 3 89 118 91 107 83 114 "];
    d -> e [pos="e,41.796,33.385 84.43,74.834 74.25,64.938 60.476,51.546 48.969,40.359", _draw_="c 9 -#000000ff B 4 84 75 74 65 60 52 49 40 ", _hdraw_="S 5 -solid c 9 -#000000ff C 9 -#000000ff P 3 51 38 42 33 47 43 "];
    d -> f [pos="e,99,36.104 99,71.697 99,63.983 99,54.712 99,46.112", _draw_="c 9 -#000000ff B 4 99 72 99 64 99 55 99 46 ", _hdraw_="S 5 -solid c 9 -#000000ff C 9 -#000000ff P 3 103 46 99 36 96 46 "];
    d -> g [pos="e,159.91,33.626 114.58,74.834 125.4,65.003 140,51.723 152.26,40.582", _draw_="c 9 -#000000ff B 4 115 75 125 65 140 52 152 41 ", _hdraw_="S 5 -solid c 9 -#000000ff C 9 -#000000ff P 3 155 43 160 34 150 38 "];
}

この形式の詳細については、graphviz の Web サイトを参照してください。

エッジのみをレイアウト / エッジを再計算

上記の出力のいずれかを使用して、任意のノードの位置を変更し、次のコマンドの入力として使用できます。

neato -n tree.modified.gv

これにより、エッジのみが再計算されます (neato dot および neato オプションの詳細については、それぞれのマニュアル ページを参照してください)。

以下に、変更されていないレイアウトと変更されたレイアウトの例を示します。bノードとgノードの位置を変更しました。

自動レイアウト:

自動レイアウト

変更されたレイアウト:

変更されたレイアウト

于 2011-12-05T17:20:24.317 に答える