Python の map() 関数を利用して、パラメータをトレーディング モデルに渡し、結果を出力します。itertools.product を使用して、2 つのパラメーターの可能な組み合わせをすべて見つけ、その組み合わせを「run」という名前の関数に渡します。関数 run は、リターンの pandas データフレームを返します。列ヘッダーは、2 つのパラメーターのタプルとリターンのシャープ率です。下記参照:
def run((x,y)):
ENTRYMULT = x
PXITR1PERIOD = y
create_trade()
pull_settings()
pull_marketdata()
create_position()
create_pnl_output()
return DataFrame(DF3['NETPNL'].values, index=DF3.index, columns=[(ENTRYMULT,PXITR1PERIOD,SHARPE)])
私の main() 関数は Pool() 機能を使用して、8 つのコアすべてで map() を実行します。
if __name__ == '__main__':
global DF3
pool = Pool()
test1 =pool.map(run,list(itertools.product([x * 0.1 for x in range(10,12)], range(100,176,25))))
print test1
map 関数はリストしか出力できないことに気付きました。出力は、返されたデータフレームからのヘッダーのリストです。print test1 からの私の出力は次のようになります。
[(1.0, 150, -8.5010673966997263)
2011-11-17 18.63
2011-11-18 17.86
2011-11-21 17.01
2011-11-22 15.92
2011-11-23 15.56
2011-11-24 15.56
2011-11-25 15.36
2011-11-28 15.18
2011-11-29 15.84
2011-11-30 NaN , (1.0, 175, -9.4016837593189102)
2011-11-17 22.63
2011-11-18 22.03
2011-11-21 21.36
2011-11-22 19.93
2011-11-23 19.77
2011-11-24 19.77
2011-11-25 19.68
2011-11-28 19.16
2011-11-29 19.56
2011-11-30 NaN , (1.1, 100, -20.255968672741457)
2011-11-17 12.03
2011-11-18 10.95
2011-11-21 10.03
2011-11-22 9.003
2011-11-23 8.221
2011-11-24 8.221
2011-11-25 7.903
2011-11-28 7.709
2011-11-29 6.444
2011-11-30 NaN , (1.1, 125, -18.178187305758119)
2011-11-17 14.64
2011-11-18 13.76
2011-11-21 12.89
2011-11-22 11.85
2011-11-23 11.34
2011-11-24 11.34
2011-11-25 11.16
2011-11-28 11.06
2011-11-29 10.14
2011-11-30 NaN , (1.1, 150, -14.486791104380069)
2011-11-17 26.25
2011-11-18 25.57
2011-11-21 24.76
2011-11-22 23.74
2011-11-23 23.48
2011-11-24 23.48
2011-11-25 23.43
2011-11-28 23.38
2011-11-29 22.93
2011-11-30 NaN , (1.1, 175, -12.118290962161304)
2011-11-17 24.66
2011-11-18 24.21
2011-11-21 23.57
2011-11-22 22.14
2011-11-23 22.06
2011-11-24 22.06
2011-11-25 22.11
2011-11-28 21.64
2011-11-29 21.24
2011-11-30 NaN ]
私の最終的な目標は、インデックス(すべてのリターンで同じ)、(ENTRYMULT、PXITR1PERIOD、SHARPE)の列ヘッダーと、対応する以下のリターンを持つパンダデータフレームを持つことです。次に、すべてのリターン シリーズでペアワイズ相関計算を行います。