点と線分の間の最短距離を見つけるための基本的な関数が必要です。好きな言語でソリューションを自由に書いてください。私はそれを私が使用しているものに翻訳することができます(Javascript)。
編集:私の線分は2つの端点によって定義されています。したがって、私の線分は2つの点とABで定義されます。この線分と点の間の距離を見つけようとしています。私の幾何学のスキルは錆びているので、私が見た例は紛らわしいです、認めて申し訳ありません。A (x1,y1)B (x2,y2)C (x3,y3)
点と線分の間の最短距離を見つけるための基本的な関数が必要です。好きな言語でソリューションを自由に書いてください。私はそれを私が使用しているものに翻訳することができます(Javascript)。
編集:私の線分は2つの端点によって定義されています。したがって、私の線分は2つの点とABで定義されます。この線分と点の間の距離を見つけようとしています。私の幾何学のスキルは錆びているので、私が見た例は紛らわしいです、認めて申し訳ありません。A (x1,y1)B (x2,y2)C (x3,y3)
エリ、あなたが決めたコードは正しくありません。セグメントが存在する線の近くで、セグメントの一方の端から遠く離れているポイントは、セグメントの近くで誤って判断されます。 更新:言及された間違った答えは、もはや受け入れられたものではありません。
C++での正しいコードを次に示します。class vec2 {float x,y;}これは、基本的に、加算、サブラクト、スケーリングなどの演算子、および距離と内積関数(つまり)を備えたクラス2Dベクトルを前提としていx1 x2 + y1 y2ます。
float minimum_distance(vec2 v, vec2 w, vec2 p) {
// Return minimum distance between line segment vw and point p
const float l2 = length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt
if (l2 == 0.0) return distance(p, v); // v == w case
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
// We clamp t from [0,1] to handle points outside the segment vw.
const float t = max(0, min(1, dot(p - v, w - v) / l2));
const vec2 projection = v + t * (w - v); // Projection falls on the segment
return distance(p, projection);
}
編集:私はJavascriptの実装が必要だったので、依存関係(またはコメントはありませんが、上記の直接の移植版です)はありません。xポイントは、属性を持つオブジェクトとして表されyます。
function sqr(x) { return x * x }
function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }
function distToSegmentSquared(p, v, w) {
var l2 = dist2(v, w);
if (l2 == 0) return dist2(p, v);
var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
t = Math.max(0, Math.min(1, t));
return dist2(p, { x: v.x + t * (w.x - v.x),
y: v.y + t * (w.y - v.y) });
}
function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)); }
編集2:Javaバージョンが必要でしたが、もっと重要なのは、2Dではなく3Dで必要だったということです。
float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) {
float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2);
if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1);
float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist;
t = constrain(t, 0, 1);
return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));
}
ここで、関数パラメーターで<px,py,pz>は、が問題のポイントであり、線分には端点<lx1,ly1,lz1>とがあります<lx2,ly2,lz2>。関数dist_sq(存在すると想定される)は、2点間の距離の2乗を求めます。
これがJavascriptの最も単純な完全なコードです。
x、yはターゲットポイント、x1、y1からx2、y2は線分です。
更新:コメントからの長さ0の行の問題を修正しました。
function pDistance(x, y, x1, y1, x2, y2) {
var A = x - x1;
var B = y - y1;
var C = x2 - x1;
var D = y2 - y1;
var dot = A * C + B * D;
var len_sq = C * C + D * D;
var param = -1;
if (len_sq != 0) //in case of 0 length line
param = dot / len_sq;
var xx, yy;
if (param < 0) {
xx = x1;
yy = y1;
}
else if (param > 1) {
xx = x2;
yy = y2;
}
else {
xx = x1 + param * C;
yy = y1 + param * D;
}
var dx = x - xx;
var dy = y - yy;
return Math.sqrt(dx * dx + dy * dy);
}
これはFINITELINESEGMENTS用に作成された実装であり、ここにある他のほとんどの関数のように無限行ではありません(これが、私がこれを作成した理由です)。
Python:
def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
px = x2-x1
py = y2-y1
norm = px*px + py*py
u = ((x3 - x1) * px + (y3 - y1) * py) / float(norm)
if u > 1:
u = 1
elif u < 0:
u = 0
x = x1 + u * px
y = y1 + u * py
dx = x - x3
dy = y - y3
# Note: If the actual distance does not matter,
# if you only want to compare what this function
# returns to other results of this function, you
# can just return the squared distance instead
# (i.e. remove the sqrt) to gain a little performance
dist = (dx*dx + dy*dy)**.5
return dist
AS3:
public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
var something:Number = p2.x*p2.x + p2.y*p2.y;
var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;
if (u > 1)
u = 1;
else if (u < 0)
u = 0;
var x:Number = segA.x + u * p2.x;
var y:Number = segA.y + u * p2.y;
var dx:Number = x - p.x;
var dy:Number = y - p.y;
var dist:Number = Math.sqrt(dx*dx + dy*dy);
return dist;
}
Java
private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
{
float px=x2-x1;
float py=y2-y1;
float temp=(px*px)+(py*py);
float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
float x = x1 + u * px;
float y = y1 + u * py;
float dx = x - x3;
float dy = y - y3;
double dist = Math.sqrt(dx*dx + dy*dy);
return dist;
}
私自身の質問スレッドでは、C、C#/ .NET 2.0、またはJavaのすべての場合に、点と線分の間の最短2D距離を計算する方法を教えてください。C#の回答を見つけたら、ここに入力するように求められました。これは、 http: //www.topcoder.com/tc?d1 = tutorials&d2 = Geometry1&module = Staticから変更されたものです:
//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] BC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
BC[0] = pointC[0] - pointB[0];
BC[1] = pointC[1] - pointB[1];
double dot = AB[0] * BC[0] + AB[1] * BC[1];
return dot;
}
//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] AC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
AC[0] = pointC[0] - pointA[0];
AC[1] = pointC[1] - pointA[1];
double cross = AB[0] * AC[1] - AB[1] * AC[0];
return cross;
}
//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
double d1 = pointA[0] - pointB[0];
double d2 = pointA[1] - pointB[1];
return Math.Sqrt(d1 * d1 + d2 * d2);
}
//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC,
bool isSegment)
{
double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
if (isSegment)
{
double dot1 = DotProduct(pointA, pointB, pointC);
if (dot1 > 0)
return Distance(pointB, pointC);
double dot2 = DotProduct(pointB, pointA, pointC);
if (dot2 > 0)
return Distance(pointA, pointC);
}
return Math.Abs(dist);
}
私は@SOですが、質問はしませんが、質問をするので、何らかの理由で何百万もの反対票を獲得するのではなく、批評家を構築することを望んでいます。このスレッドの解決策はエキゾチックな言語(Fortran、Mathematica)であるか、誰かによって欠陥があるとタグ付けされているので、私は他の誰かのアイデアを共有したかった(そして奨励された)。私にとって(Grumdrigによる)唯一の有用なものはC ++で書かれており、誰もそれに欠陥のあるタグを付けていません。ただし、呼び出されるメソッド(ドットなど)がありません。
セグメントのパラメトリック記述を使用し、セグメントによって定義された線にポイントを投影します。パラメータがセグメント内で0から1になると、投影がこの境界の外側にある場合、セグメントに垂直な直線ではなく、対応するエンポイントまでの距離を計算します。
Clear["Global`*"];
distance[{start_, end_}, pt_] :=
Module[{param},
param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
here means vector product*)
Which[
param < 0, EuclideanDistance[start, pt], (*If outside bounds*)
param > 1, EuclideanDistance[end, pt],
True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
]
];
プロット結果:
Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]
カットオフ距離よりも近いポイントをプロットします。

等高線図:

興味のある方のために、JoshuaのJavascriptコードをObjective-Cに簡単に変換します。
- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
double dx = p.x - xx;
double dy = p.y - yy;
return sqrtf(dx * dx + dy * dy);
}
このソリューションを使用する必要がMKMapPointあったので、他の誰かが必要とする場合に備えて共有します。ちょっとした変更で、距離がメートル単位で返されます。
- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
F#では、との間の点cから線分までの距離は次の式で与えられます。ab
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
ベクトルは、線分に沿ってからをd指します。withの内積は、無限線と点の間の最も近い点のパラメーターを示します。and関数は、ポイントがとの間にあるように、このパラメーターを範囲にクランプするために使用されます。最後に、の長さは、線分の最も近い点からの距離です。abd/sc-acminmax0..saba+p-cc
使用例:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
ねえ、私は昨日これを書いた。これは、基本的にJavascriptであるActionscript 3.0にありますが、同じPointクラスを持っていない場合もあります。
//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
var nearestPt:Point; //closest point on seqment to pt
var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
var bLenSq:Number = dot( b, b ); //Segment length squared
if( keyDot <= 0 ) //pt is "behind" st, use st
{
nearestPt = st
}
else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
{
nearestPt = st.add(b);
}
else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
{
var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
nearestPt = st.add(partOfB);
}
var dist:Number = (pt.subtract(nearestPt)).length;
return dist;
}
また、ここに問題のかなり完全で読みやすい議論があります:notejot.com
怠け者のために、これが上記の@GrumdrigのソリューションのObjective-Cポートです:
CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
CGFloat l2 = dist2(v, w);
if (l2 == 0.0f) return dist2(p, v);
CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0.0f) return dist2(p, v);
if (t > 1.0f) return dist2(p, w);
return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
Pythonでのコーディングに抵抗できませんでした:)
from math import sqrt, fabs
def pdis(a, b, c):
t = b[0]-a[0], b[1]-a[1] # Vector ab
dd = sqrt(t[0]**2+t[1]**2) # Length of ab
t = t[0]/dd, t[1]/dd # unit vector of ab
n = -t[1], t[0] # normal unit vector to ab
ac = c[0]-a[0], c[1]-a[1] # vector ac
return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)
print pdis((1,1), (2,2), (2,0)) # Example (answer is 1.414)
fortranの同上:)
real function pdis(a, b, c)
real, dimension(0:1), intent(in) :: a, b, c
real, dimension(0:1) :: t, n, ac
real :: dd
t = b - a ! Vector ab
dd = sqrt(t(0)**2+t(1)**2) ! Length of ab
t = t/dd ! unit vector of ab
n = (/-t(1), t(0)/) ! normal unit vector to ab
ac = c - a ! vector ac
pdis = abs(ac(0)*n(0)+ac(1)*n(1)) ! Projection of ac to n (the minimum distance)
end function pdis
program test
print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/)) ! Example (answer is 1.414)
end program test
これは、Grumdrigのソリューションからのより完全なスペルです。このバージョンは、最も近いポイント自体も返します。
#include "stdio.h"
#include "math.h"
class Vec2
{
public:
float _x;
float _y;
Vec2()
{
_x = 0;
_y = 0;
}
Vec2( const float x, const float y )
{
_x = x;
_y = y;
}
Vec2 operator+( const Vec2 &v ) const
{
return Vec2( this->_x + v._x, this->_y + v._y );
}
Vec2 operator-( const Vec2 &v ) const
{
return Vec2( this->_x - v._x, this->_y - v._y );
}
Vec2 operator*( const float f ) const
{
return Vec2( this->_x * f, this->_y * f );
}
float DistanceToSquared( const Vec2 p ) const
{
const float dX = p._x - this->_x;
const float dY = p._y - this->_y;
return dX * dX + dY * dY;
}
float DistanceTo( const Vec2 p ) const
{
return sqrt( this->DistanceToSquared( p ) );
}
float DotProduct( const Vec2 p ) const
{
return this->_x * p._x + this->_y * p._y;
}
};
// return minimum distance between line segment vw and point p, and the closest point on the line segment, q
float DistanceFromLineSegmentToPoint( const Vec2 v, const Vec2 w, const Vec2 p, Vec2 * const q )
{
const float distSq = v.DistanceToSquared( w ); // i.e. |w-v|^2 ... avoid a sqrt
if ( distSq == 0.0 )
{
// v == w case
(*q) = v;
return v.DistanceTo( p );
}
// consider the line extending the segment, parameterized as v + t (w - v)
// we find projection of point p onto the line
// it falls where t = [(p-v) . (w-v)] / |w-v|^2
const float t = ( p - v ).DotProduct( w - v ) / distSq;
if ( t < 0.0 )
{
// beyond the v end of the segment
(*q) = v;
return v.DistanceTo( p );
}
else if ( t > 1.0 )
{
// beyond the w end of the segment
(*q) = w;
return w.DistanceTo( p );
}
// projection falls on the segment
const Vec2 projection = v + ( ( w - v ) * t );
(*q) = projection;
return p.DistanceTo( projection );
}
float DistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY, float *qX, float *qY )
{
Vec2 q;
float distance = DistanceFromLineSegmentToPoint( Vec2( segmentX1, segmentY1 ), Vec2( segmentX2, segmentY2 ), Vec2( pX, pY ), &q );
(*qX) = q._x;
(*qY) = q._y;
return distance;
}
void TestDistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY )
{
float qX;
float qY;
float d = DistanceFromLineSegmentToPoint( segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, &qX, &qY );
printf( "line segment = ( ( %f, %f ), ( %f, %f ) ), p = ( %f, %f ), distance = %f, q = ( %f, %f )\n",
segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, d, qX, qY );
}
void TestDistanceFromLineSegmentToPoint()
{
TestDistanceFromLineSegmentToPoint( 0, 0, 1, 1, 1, 0 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 5, 4 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 30, 15 );
TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, -30, 15 );
TestDistanceFromLineSegmentToPoint( 0, 0, 10, 0, 5, 1 );
TestDistanceFromLineSegmentToPoint( 0, 0, 0, 10, 1, 5 );
}
アークタンジェントを使用したワンラインソリューション:
アイデアは、Aを(0、0)に移動し、三角形を時計回りに回転させてCをX軸上に配置することです。これが発生すると、Byが距離になります。

C#
public double Distance(Point a, Point b, Point c)
{
// normalize points
Point cn = new Point(c.X - a.X, c.Y - a.Y);
Point bn = new Point(b.X - a.X, b.Y - a.Y);
double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);
return Math.Sin(angle)*abLength;
}
1行のC#(SQLに変換される)
double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))
上記のGrumdrigの答えに対するこの変更を検討してください。多くの場合、浮動小数点の不正確さが問題を引き起こす可能性があります。以下のバージョンではdoubleを使用していますが、floatに簡単に変更できます。重要な部分は、イプシロンを使用して「スロップ」を処理することです。さらに、交差点がどこで発生したか、または交差点が発生したかどうかを知りたいことがよくあります。返されたtが<0.0または>1.0の場合、衝突は発生していません。ただし、衝突が発生しなかった場合でも、セグメント上のPに最も近いポイントがどこにあるかを知りたい場合が多いため、qxとqyを使用してこの位置を返します。
double PointSegmentDistanceSquared( double px, double py,
double p1x, double p1y,
double p2x, double p2y,
double& t,
double& qx, double& qy)
{
static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dx = p2x - p1x;
double dy = p2y - p1y;
double dp1x = px - p1x;
double dp1y = py - p1y;
const double segLenSquared = (dx * dx) + (dy * dy);
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
{
// segment is a point.
qx = p1x;
qy = p1y;
t = 0.0;
return ((dp1x * dp1x) + (dp1y * dp1y));
}
else
{
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
if (t < kEpsilon)
{
// intersects at or to the "left" of first segment vertex (p1x, p1y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon)
{
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
qx = p1x;
qy = p1y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else if (t > (1.0 - kEpsilon))
{
// intersects at or to the "right" of second segment vertex (p2x, p2y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon))
{
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
qx = p2x;
qy = p2y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else
{
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
qx = p1x + (t * dx);
qy = p1y + (t * dy);
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqx = px - qx;
double dpqy = py - qy;
return ((dpqx * dpqx) + (dpqy * dpqy));
}
}
私はあなたが最短のものを見つけたいと思っていると思いますポイントとラインセグメント間の距離。これを行うには、ポイントを通過する線分(lineB)に垂直な線(lineA)を見つけ、その線(lineA)と線分(lineB)を通過する線との交点を決定する必要があります。 ; その点が線分の2つの点の間にある場合、距離は、点と、線Aと線Bの交点である先ほど見つけた点との間の距離です。ポイントがラインセグメントの2つのポイントの間にない場合は、ポイントとラインセグメントの両端の近い方との間の距離を取得する必要があります。これは、ポイントと線分の2つのポイントの間の(平方根を避けるための)平方距離を取ることで簡単に実行できます。どちらか近い方で、その平方根を取ります。
GrumdrigのC++/ JavaScript実装は私にとって非常に便利だったので、私が使用しているPythonダイレクトポートを提供しました。完全なコードはここにあります。
class Point(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def square(x):
return x * x
def distance_squared(v, w):
return square(v.x - w.x) + square(v.y - w.y)
def distance_point_segment_squared(p, v, w):
# Segment length squared, |w-v|^2
d2 = distance_squared(v, w)
if d2 == 0:
# v == w, return distance to v
return distance_squared(p, v)
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
if t < 0:
# Beyond v end of the segment
return distance_squared(p, v)
elif t > 1.0:
# Beyond w end of the segment
return distance_squared(p, w)
else:
# Projection falls on the segment.
proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
# print proj.x, proj.y
return distance_squared(p, proj)
引数なしで関数を呼び出す場合の組み込みの「セルフテスト」を備えたMatlabコード:
function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )
if( nargin < 3 )
selfTest();
r=0;
else
vx = xy0(1)-xyP(1);
vy = xy0(2)-xyP(2);
ux = xy1(1)-xy0(1);
uy = xy1(2)-xy0(2);
lenSqr= (ux*ux+uy*uy);
detP= -vx*ux + -vy*uy;
if( detP < 0 )
r = norm(xy0-xyP,2);
elseif( detP > lenSqr )
r = norm(xy1-xyP,2);
else
r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
end
end
function selfTest()
%#ok<*NASGU>
disp(['invalid args, distPointToLineSegment running (recursive) self-test...']);
ptA = [1;1]; ptB = [-1;-1];
ptC = [1/2;1/2]; % on the line
ptD = [-2;-1.5]; % too far from line segment
ptE = [1/2;0]; % should be same as perpendicular distance to line
ptF = [1.5;1.5]; % along the A-B but outside of the segment
distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
figure(1); clf;
circle = @(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
'Curvature', [1 1], 'EdgeColor', c);
plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
hold off;
axis([-3 3 -3 3]); axis equal;
end
end
そして今、私のソリューションも......(Javascript)
Math.pow関数を避けようとしているので、非常に高速です。
ご覧のとおり、関数の最後に線の距離があります。
コードはlibhttp://www.draw2d.org/graphiti/jsdoc/#!/exampleからのものです
/**
* Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
* A simple hit test.
*
* @return {boolean}
* @static
* @private
* @param {Number} coronaWidth the accepted corona for the hit test
* @param {Number} X1 x coordinate of the start point of the line
* @param {Number} Y1 y coordinate of the start point of the line
* @param {Number} X2 x coordinate of the end point of the line
* @param {Number} Y2 y coordinate of the end point of the line
* @param {Number} px x coordinate of the point to test
* @param {Number} py y coordinate of the point to test
**/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1, X2, Y2, px, py)
{
// Adjust vectors relative to X1,Y1
// X2,Y2 becomes relative vector from X1,Y1 to end of segment
X2 -= X1;
Y2 -= Y1;
// px,py becomes relative vector from X1,Y1 to test point
px -= X1;
py -= Y1;
var dotprod = px * X2 + py * Y2;
var projlenSq;
if (dotprod <= 0.0) {
// px,py is on the side of X1,Y1 away from X2,Y2
// distance to segment is length of px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// switch to backwards vectors relative to X2,Y2
// X2,Y2 are already the negative of X1,Y1=>X2,Y2
// to get px,py to be the negative of px,py=>X2,Y2
// the dot product of two negated vectors is the same
// as the dot product of the two normal vectors
px = X2 - px;
py = Y2 - py;
dotprod = px * X2 + py * Y2;
if (dotprod <= 0.0) {
// px,py is on the side of X2,Y2 away from X1,Y1
// distance to segment is length of (backwards) px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// px,py is between X1,Y1 and X2,Y2
// dotprod is the length of the px,py vector
// projected on the X2,Y2=>X1,Y1 vector times the
// length of the X2,Y2=>X1,Y1 vector
projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
}
}
// Distance to line is now the length of the relative point
// vector minus the length of its projection onto the line
// (which is zero if the projection falls outside the range
// of the line segment).
var lenSq = px * px + py * py - projlenSq;
if (lenSq < 0) {
lenSq = 0;
}
return Math.sqrt(lenSq)<coronaWidth;
};
ここではSwiftを使用しています
/* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
let A = p.x - l1.x
let B = p.y - l1.y
let C = l2.x - l1.x
let D = l2.y - l1.y
let dot = A * C + B * D
let len_sq = C * C + D * D
let param = dot / len_sq
var xx, yy: CGFloat
if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
xx = l1.x
yy = l1.y
} else if param > 1 {
xx = l2.x
yy = l2.y
} else {
xx = l1.x + param * C
yy = l1.y + param * D
}
let dx = p.x - xx
let dy = p.y - yy
return sqrt(dx * dx + dy * dy)
}
C#
@Grumdrigから適応
public static double MinimumDistanceToLineSegment(this Point p,
Line line)
{
var v = line.StartPoint;
var w = line.EndPoint;
double lengthSquared = DistanceSquared(v, w);
if (lengthSquared == 0.0)
return Distance(p, v);
double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
var projection = v + t * (w - v);
return Distance(p, projection);
}
public static double Distance(Point a, Point b)
{
return Math.Sqrt(DistanceSquared(a, b));
}
public static double DistanceSquared(Point a, Point b)
{
var d = a - b;
return DotProduct(d, d);
}
public static double DotProduct(Point a, Point b)
{
return (a.X * b.X) + (a.Y * b.Y);
}
t-sqlでコーディング
ポイントは(@ px、@ py)で、線分は(@ ax、@ ay)から(@ bx、@ by)まで続きます。
create function fn_sqr (@NumberToSquare decimal(18,10))
returns decimal(18,10)
as
begin
declare @Result decimal(18,10)
set @Result = @NumberToSquare * @NumberToSquare
return @Result
end
go
create function fn_Distance(@ax decimal (18,10) , @ay decimal (18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
declare @Result decimal(18,10)
set @Result = (select dbo.fn_sqr(@ax - @bx) + dbo.fn_sqr(@ay - @by) )
return @Result
end
go
create function fn_DistanceToSegmentSquared(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
declare @l2 decimal(18,10)
set @l2 = (select dbo.fn_Distance(@ax, @ay, @bx, @by))
if @l2 = 0
return dbo.fn_Distance(@px, @py, @ax, @ay)
declare @t decimal(18,10)
set @t = ((@px - @ax) * (@bx - @ax) + (@py - @ay) * (@by - @ay)) / @l2
if (@t < 0)
return dbo.fn_Distance(@px, @py, @ax, @ay);
if (@t > 1)
return dbo.fn_Distance(@px, @py, @bx, @by);
return dbo.fn_Distance(@px, @py, @ax + @t * (@bx - @ax), @ay + @t * (@by - @ay))
end
go
create function fn_DistanceToSegment(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
return sqrt(dbo.fn_DistanceToSegmentSquared(@px, @py , @ax , @ay , @bx , @by ))
end
go
--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1)
--result = 2.2360679775
--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1)
--result = 2.4961508830
--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1)
--result = 0.0000000000
StackOverflowの他のほぼ全員が回答を提供しているようです(これまでに23件の回答)。C#に対する私の貢献は次のとおりです。これは主にM.Katzの回答に基づいており、M。KatzはGrumdrigの回答に基づいています。
public struct MyVector
{
private readonly double _x, _y;
// Constructor
public MyVector(double x, double y)
{
_x = x;
_y = y;
}
// Distance from this point to another point, squared
private double DistanceSquared(MyVector otherPoint)
{
double dx = otherPoint._x - this._x;
double dy = otherPoint._y - this._y;
return dx * dx + dy * dy;
}
// Find the distance from this point to a line segment (which is not the same as from this
// point to anywhere on an infinite line). Also returns the closest point.
public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
out MyVector closestPoint)
{
return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint));
}
// Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want
// to compare several distances to find the smallest or largest, but don't need the distance
public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1,
MyVector lineSegmentPoint2, out MyVector closestPoint)
{
// Compute length of line segment (squared) and handle special case of coincident points
double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
if (segmentLengthSquared < 1E-7f) // Arbitrary "close enough for government work" value
{
closestPoint = lineSegmentPoint1;
return this.DistanceSquared(closestPoint);
}
// Use the magic formula to compute the "projection" of this point on the infinite line
MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;
// Handle the two cases where the projection is not on the line segment, and the case where
// the projection is on the segment
if (t <= 0)
closestPoint = lineSegmentPoint1;
else if (t >= 1)
closestPoint = lineSegmentPoint2;
else
closestPoint = lineSegmentPoint1 + (lineSegment * t);
return this.DistanceSquared(closestPoint);
}
public double DotProduct(MyVector otherVector)
{
return this._x * otherVector._x + this._y * otherVector._y;
}
public static MyVector operator +(MyVector leftVector, MyVector rightVector)
{
return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
}
public static MyVector operator -(MyVector leftVector, MyVector rightVector)
{
return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
}
public static MyVector operator *(MyVector aVector, double aScalar)
{
return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
}
// Added using ReSharper due to CodeAnalysis nagging
public bool Equals(MyVector other)
{
return _x.Equals(other._x) && _y.Equals(other._y);
}
public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj)) return false;
return obj is MyVector && Equals((MyVector) obj);
}
public override int GetHashCode()
{
unchecked
{
return (_x.GetHashCode()*397) ^ _y.GetHashCode();
}
}
public static bool operator ==(MyVector left, MyVector right)
{
return left.Equals(right);
}
public static bool operator !=(MyVector left, MyVector right)
{
return !left.Equals(right);
}
}
そして、ここに小さなテストプログラムがあります。
public static class JustTesting
{
public static void Main()
{
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
for (int i = 0; i < 10000000; i++)
{
TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
TestIt(5, 1, 0, 0, 10, 0, 1.0);
TestIt(1, 5, 0, 0, 0, 10, 1.0);
}
stopwatch.Stop();
TimeSpan timeSpan = stopwatch.Elapsed;
}
private static void TestIt(float aPointX, float aPointY,
float lineSegmentPoint1X, float lineSegmentPoint1Y,
float lineSegmentPoint2X, float lineSegmentPoint2Y,
double expectedAnswer)
{
// Katz
double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY),
new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y),
new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(d1 == expectedAnswer);
/*
// Katz using squared distance
double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY),
new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y),
new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
*/
/*
// Matti (optimized)
double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY),
new PointF(lineSegmentPoint1X, lineSegmentPoint1Y),
new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
*/
}
private static double DistanceFromPointToLineSegment(MyVector aPoint,
MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
{
MyVector closestPoint; // Not used
return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint);
}
private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint,
MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
{
MyVector closestPoint; // Not used
return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2,
out closestPoint);
}
}
ご覧のとおり、Sqrt()メソッドを回避したバージョンと通常のバージョンの違いを測定してみました。私のテストでは、約2.5%節約できる可能性があることが示されていますが、それについても確信がありません。さまざまなテスト実行内の変動は、同じ桁数でした。Mattiによって投稿されたバージョン(および明らかな最適化)も測定してみましたが、そのバージョンはKatz / Grumdrigコードに基づくバージョンよりも約4%遅いようです。
編集:ちなみに、外積(およびSqrt())を使用して無限の線(線分ではない)までの距離を見つける方法も測定しようとしましたが、約32%高速です。
これは、C#に変換されたdevnullicusのC++バージョンです。私の実装では、交差点を知る必要があり、彼の解決策がうまく機能することを発見しました。
public static bool PointSegmentDistanceSquared(PointF point, PointF lineStart, PointF lineEnd, out double distance, out PointF intersectPoint)
{
const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dX = lineEnd.X - lineStart.X;
double dY = lineEnd.Y - lineStart.Y;
double dp1X = point.X - lineStart.X;
double dp1Y = point.Y - lineStart.Y;
double segLenSquared = (dX * dX) + (dY * dY);
double t = 0.0;
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
{
// segment is a point.
intersectPoint = lineStart;
t = 0.0;
distance = ((dp1X * dp1X) + (dp1Y * dp1Y));
}
else
{
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1X * dX) + (dp1Y * dY)) / segLenSquared;
if (t < kEpsilon)
{
// intersects at or to the "left" of first segment vertex (lineStart.X, lineStart.Y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon)
{
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
intersectPoint = lineStart;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
}
else if (t > (1.0 - kEpsilon))
{
// intersects at or to the "right" of second segment vertex (lineEnd.X, lineEnd.Y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon))
{
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
intersectPoint = lineEnd;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
}
else
{
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
intersectPoint = new PointF((float)(lineStart.X + (t * dX)), (float)(lineStart.Y + (t * dY)));
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqX = point.X - intersectPoint.X;
double dpqY = point.Y - intersectPoint.Y;
distance = ((dpqX * dpqX) + (dpqY * dpqY));
}
return true;
}
2Dおよび3Dソリューション
線分が(0, 0, 0)-(d, 0, 0)と点になるような基底変換を考えてみましょう(u, v, 0)。最短距離はその平面で発生し、次の式で与えられます。
u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u -> d(B, C)
(線への投影に応じて、端点の1つまたは支持線までの距離。等距離軌跡は2つの半円と2つの線分で構成されます。)
上記の式で、dはセグメントABの長さであり、u、vはそれぞれ、AB / d(AB方向の単位ベクトル)とACの内積と外積(のモジュラス)です。したがって、ベクトル的に、
AB.AC ≤ 0 -> |AC|
0 ≤ AB.AC ≤ AB² -> |ABxAC|/|AB|
AB² ≤ AB.AC -> |BC|
次のWebサイトのMatlabGEOMETRYツールボックスを参照してください。http: //people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html
ctrl + fと入力し、「segment」と入力して、線分関連の関数を検索します。関数「segment_point_dist_2d.m」と「segment_point_dist_3d.m」が必要です。
GEOMETRYコードは、CバージョンとC ++バージョン、およびFORTRAN77バージョンとFORTRAN90バージョンとMATLABバージョンで使用できます。
JoshuaのJavascriptに基づくAutoHotkeysバージョン:
plDist(x, y, x1, y1, x2, y2) {
A:= x - x1
B:= y - y1
C:= x2 - x1
D:= y2 - y1
dot:= A*C + B*D
sqLen:= C*C + D*D
param:= dot / sqLen
if (param < 0 || ((x1 = x2) && (y1 = y2))) {
xx:= x1
yy:= y1
} else if (param > 1) {
xx:= x2
yy:= y2
} else {
xx:= x1 + param*C
yy:= y1 + param*D
}
dx:= x - xx
dy:= y - yy
return sqrt(dx*dx + dy*dy)
}
受け入れられた答えは機能しません(たとえば、0,0と(-10,2,10,2)の間の距離は2でなければなりません)。
動作するコードは次のとおりです。
def dist2line2(x,y,line):
x1,y1,x2,y2=line
vx = x1 - x
vy = y1 - y
ux = x2-x1
uy = y2-y1
length = ux * ux + uy * uy
det = (-vx * ux) + (-vy * uy) #//if this is < 0 or > length then its outside the line segment
if det < 0:
return (x1 - x)**2 + (y1 - y)**2
if det > length:
return (x2 - x)**2 + (y2 - y)**2
det = ux * vy - uy * vx
return det**2 / length
def dist2line(x,y,line): return math.sqrt(dist2line2(x,y,line))
ここにJavaの実装が表示されなかったので、Javascript関数を受け入れられた回答からJavaコードに変換しました。
static double sqr(double x) {
return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
double l2 = dist2(v, w);
if (l2 == 0) return dist2(p, v);
double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0) return dist2(p, v);
if (t > 1) return dist2(p, w);
return dist2(p, new DoublePoint(
v.x + t * (w.x - v.x),
v.y + t * (w.y - v.y)
));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
public double x;
public double y;
public DoublePoint(double x, double y) {
this.x = x;
this.y = y;
}
}
WPFバージョン:
public class LineSegment
{
private readonly Vector _offset;
private readonly Vector _vector;
public LineSegment(Point start, Point end)
{
_offset = (Vector)start;
_vector = (Vector)(end - _offset);
}
public double DistanceTo(Point pt)
{
var v = (Vector)pt - _offset;
// first, find a projection point on the segment in parametric form (0..1)
var p = (v * _vector) / _vector.LengthSquared;
// and limit it so it lays inside the segment
p = Math.Min(Math.Max(p, 0), 1);
// now, find the distance from that point to our point
return (_vector * p - v).Length;
}
}
これを実現する方法を示すために、インタラクティブなDesmosグラフを作成しました。
https://www.desmos.com/calculator/kswrm8ddum
赤い点はA、緑の点はB、点Cは青です。グラフ内のポイントをドラッグして、値の変化を確認できます。左側の値「s」は線分のパラメータです(つまり、s = 0は点Aを意味し、s = 1は点Bを意味します)。値'd'は、3番目の点からAとBを通る線までの距離です。
編集:
ちょっとした洞察:座標(s、d)は、座標系の3番目の点Cの座標です。ここで、ABは単位x軸であり、単位y軸はABに垂直です。
これが私が書いたコードです。このコードは、ポイントがの形式で定義されていることを前提としてい{x:5, y:7}ます。これは絶対的に最も効率的な方法ではありませんが、私が思いついた最も単純で理解しやすいコードであることに注意してください。
// a, b, and c in the code below are all points
function distance(a, b)
{
var dx = a.x - b.x;
var dy = a.y - b.y;
return Math.sqrt(dx*dx + dy*dy);
}
function Segment(a, b)
{
var ab = {
x: b.x - a.x,
y: b.y - a.y
};
var length = distance(a, b);
function cross(c) {
return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
};
this.distanceFrom = function(c) {
return Math.min(distance(a,c),
distance(b,c),
Math.abs(cross(c) / length));
};
}
上記の関数は垂直線では機能しません。これが正常に動作している関数です!点p1、p2と線を引きます。CheckPointはpです。
public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
// (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
//d(P,L) = --------------------------------
// sqrt( (x2-x1)pow2 + (y2-y1)pow2 )
double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
double d = ch / del;
return (float)d;
}
これはC++の回答と同じですが、pascalに移植されています。ポイントパラメータの順序は私のコードに合うように変更されましたが、同じです。
function Dot(const p1, p2: PointF): double;
begin
Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
result.x := p1.x - p2.x;
result.y := p1.y - p2.y;
end;
function ShortestDistance2(const p,v,w : PointF) : double;
var
l2,t : double;
projection,tt: PointF;
begin
// Return minimum distance between line segment vw and point p
//l2 := length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt
l2 := Distance(v,w);
l2 := MPower(l2,2);
if (l2 = 0.0) then begin
result:= Distance(p, v); // v == w case
exit;
end;
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
if (t < 0.0) then begin
result := Distance(p, v); // Beyond the 'v' end of the segment
exit;
end
else if (t > 1.0) then begin
result := Distance(p, w); // Beyond the 'w' end of the segment
exit;
end;
//projection := v + t * (w - v); // Projection falls on the segment
tt.x := v.x + t * (w.x - v.x);
tt.y := v.y + t * (w.y - v.y);
result := Distance(p, tt);
end;
%Matlab solution by Tim from Cody
function ans=distP2S(x0,y0,x1,y1,x2,y2)
% Point is x0,y0
z=complex(x0-x1,y0-y1);
complex(x2-x1,y2-y1);
abs(z-ans*min(1,max(0,real(z/ans))));
このアルゴリズムは、指定された線と指定された点を含む直交線との交点を見つけ、その距離を計算することに基づいています。線分の場合、交差が線分の点の間にあるかどうかを確認する必要があります。そうでない場合、最小距離は指定された点と線分の終点の1つとの間にあります。これはC#の実装です。
Double Distance(Point a, Point b)
{
double xdiff = a.X - b.X, ydiff = a.Y - b.Y;
return Math.Sqrt((long)xdiff * xdiff + (long)ydiff * ydiff);
}
Boolean IsBetween(double x, double a, double b)
{
return ((a <= b && x >= a && x <= b) || (a > b && x <= a && x >= b));
}
Double GetDistance(Point pt, Point pt1, Point pt2, out Point intersection)
{
Double a, x, y, R;
if (pt1.X != pt2.X) {
a = (double)(pt2.Y - pt1.Y) / (pt2.X - pt1.X);
x = (a * (pt.Y - pt1.Y) + a * a * pt1.X + pt.X) / (a * a + 1);
y = a * x + pt1.Y - a * pt1.X; }
else { x = pt1.X; y = pt.Y; }
if (IsBetween(x, pt1.X, pt2.X) && IsBetween(y, pt1.Y, pt2.Y)) {
intersection = new Point((int)x, (int)y);
R = Distance(intersection, pt); }
else {
double d1 = Distance(pt, pt1), d2 = Distance(pt, pt2);
if (d1 < d2) { intersection = pt1; R = d1; }
else { intersection = pt2; R = d2; }}
return R;
}
GLSLバージョン:
// line (a -> b ) point p[enter image description here][1]
float distanceToLine(vec2 a, vec2 b, vec2 p) {
float aside = dot((p - a),(b - a));
if(aside< 0.0) return length(p-a);
float bside = dot((p - b),(a - b));
if(bside< 0.0) return length(p-b);
vec2 pointOnLine = (bside*a + aside*b)/pow(length(a-b),2.0);
return length(p - pointOnLine);
}
2D座標配列のPythonNumpy実装:
import numpy as np
def dist2d(p1, p2, coords):
''' Distance from points to a finite line btwn p1 -> p2 '''
assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
dp = p2 - p1
st = dp[0]**2 + dp[1]**2
u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st
u[u > 1.] = 1.
u[u < 0.] = 0.
dx = (p1[0] + u * dp[0]) - coords[:, 0]
dy = (p1[1] + u * dp[1]) - coords[:, 1]
return np.sqrt(dx**2 + dy**2)
# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])
# List of coordinates
coords = np.array(
[[0., 0.],
[5., 5.],
[10., 10.],
[20., 20.]
])
d = dist2d(p1, p2, coords)
# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])
これはベクトル数学に基づくものです。このソリューションは、より高い次元でも機能し、(線分上の)交点についてもレポートします。
def dist(x1,y1,x2,y2,px,py):
a = np.array([[x1,y1]]).T
b = np.array([[x2,y2]]).T
x = np.array([[px,py]]).T
tp = (np.dot(x.T, b) - np.dot(a.T, b)) / np.dot(b.T, b)
tp = tp[0][0]
tmp = x - (a + tp*b)
d = np.sqrt(np.dot(tmp.T,tmp)[0][0])
return d, a+tp*b
x1,y1=2.,2.
x2,y2=5.,5.
px,py=4.,1.
d, inters = dist(x1,y1, x2,y2, px,py)
print (d)
print (inters)
結果は
2.1213203435596424
[[2.5]
[2.5]]
数学はここで説明されています
ダーツとフラッターの解決策:
import 'dart:math' as math;
class Utils {
static double shortestDistance(Point p1, Point p2, Point p3){
double px = p2.x - p1.x;
double py = p2.y - p1.y;
double temp = (px*px) + (py*py);
double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
double x = p1.x + u*px;
double y = p1.y + u*py;
double dx = x - p3.x;
double dy = y - p3.y;
double dist = math.sqrt(dx*dx+dy*dy);
return dist;
}
}
class Point {
double x;
double y;
Point(this.x, this.y);
}
Matlabの直接Grumdrigの実装
function ans=distP2S(px,py,vx,vy,wx,wy)
% [px py vx vy wx wy]
t=( (px-vx)*(wx-vx)+(py-vy)*(wy-vy) )/idist(vx,wx,vy,wy)^2;
[idist(px,vx,py,vy) idist(px,vx+t*(wx-vx),py,vy+t*(wy-vy)) idist(px,wx,py,wy) ];
ans(1+(t>0)+(t>1)); % <0 0<=t<=1 t>1
end
function d=idist(a,b,c,d)
d=abs(a-b+1i*(c-d));
end
線分ではなく無限の線の場合、最も簡単な方法はこれ(ルビー単位)です。ここで、mx + bは線で、(x1、y1)は既知の点です。
(y1 - mx1 - b).abs / Math.sqrt(m**2 + 1)
これに出くわして、Luaの実装を追加しようと思いました。ポイントはテーブル{x=xVal、y = yVal}として与えられ、線分またはセグメントは2つのポイントを含むテーブルによって与えられると想定しています(以下の例を参照)。
function distance( P1, P2 )
return math.sqrt((P1.x-P2.x)^2 + (P1.y-P2.y)^2)
end
-- Returns false if the point lies beyond the reaches of the segment
function distPointToSegment( line, P )
if line[1].x == line[2].x and line[1].y == line[2].y then
print("Error: Not a line!")
return false
end
local d = distance( line[1], line[2] )
local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)
local projection = {}
projection.x = line[1].x + t*(line[2].x-line[1].x)
projection.y = line[1].y + t*(line[2].y-line[1].y)
if t >= 0 and t <= 1 then -- within line segment?
return distance( projection, {x=P.x, y=P.y} )
else
return false
end
end
-- Returns value even if point is further down the line (outside segment)
function distPointToLine( line, P )
if line[1].x == line[2].x and line[1].y == line[2].y then
print("Error: Not a line!")
return false
end
local d = distance( line[1], line[2] )
local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)
local projection = {}
projection.x = line[1].x + t*(line[2].x-line[1].x)
projection.y = line[1].y + t*(line[2].y-line[1].y)
return distance( projection, {x=P.x, y=P.y} )
end
使用例:
local P1 = {x = 0, y = 0}
local P2 = {x = 10, y = 10}
local line = { P1, P2 }
local P3 = {x = 7, y = 15}
print(distPointToLine( line, P3 )) -- prints 5.6568542494924
print(distPointToSegment( line, P3 )) -- prints false
この式に基づくJavaScriptの少しクリーンなソリューション:

distToSegment: function (point, linePointA, linePointB){
var x0 = point.X;
var y0 = point.Y;
var x1 = linePointA.X;
var y1 = linePointA.Y;
var x2 = linePointB.X;
var y2 = linePointB.Y;
var Dx = (x2 - x1);
var Dy = (y2 - y1);
var numerator = Math.abs(Dy*x0 - Dx*y0 - x1*y2 + x2*y1);
var denominator = Math.sqrt(Dx*Dx + Dy*Dy);
if (denominator == 0) {
return this.dist2(point, linePointA);
}
return numerator/denominator;
}
GLSLでこれを実行したかったのですが、可能であれば、これらの条件をすべて回避することをお勧めします。クランプ()を使用すると、次の2つのエンドポイントのケースを回避できます。
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
float l = dot(AB, AB);
if (l <= 0.0000001) return A; // A and B are practically the same
return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0); // do the projection
}
AとBが互いに非常に接近していないことを確認できる場合は、これを簡略化してif()を削除できます。実際、AとBが同じであっても、私のGPUは、この無条件バージョンで正しい結果を出します(ただし、これは、GLSLのゼロ除算が定義されていないOpenGL 4.1より前のバージョンを使用しています)。
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}
距離を計算するのは簡単です-GLSLは、この最も近い点とPで使用できるdistance()関数を提供します。
カプセル距離関数のIñigoQuilezのコードに触発されました
Visual Basicを除いて、この回答と同じです。MicrosoftExcelおよびVBA/マクロでユーザー定義関数として使用できるようにします。
この関数は、ポイント(x、y)から(x1、y1)および(x2、y2)で定義されたセグメントまでの最も近い距離を返します。
Function DistanceToSegment(x As Double, y As Double, x1 As Double, y1 As Double, x2 As Double, y2 As Double)
Dim A As Double
A = x - x1
Dim B As Double
B = y - y1
Dim C As Double
C = x2 - x1
Dim D As Double
D = y2 - y1
Dim dot As Double
dot = A * C + B * D
Dim len_sq As Double
len_sq = C * C + D * D
Dim param As Double
param = -1
If (len_sq <> 0) Then
param = dot / len_sq
End If
Dim xx As Double
Dim yy As Double
If (param < 0) Then
xx = x1
yy = y1
ElseIf (param > 1) Then
xx = x2
yy = y2
Else
xx = x1 + param * C
yy = y1 + param * D
End If
Dim dx As Double
dx = x - xx
Dim dy As Double
dy = y - yy
DistanceToSegment = Math.Sqr(dx * dx + dy * dy)
End Function
Lua: 線分(線全体ではない)と点の間の最小距離を求めます
function solveLinearEquation(A1,B1,C1,A2,B2,C2)
--it is the implitaion of a method of solving linear equations in x and y
local f1 = B1*C2 -B2*C1
local f2 = A2*C1-A1*C2
local f3 = A1*B2 -A2*B1
return {x= f1/f3, y= f2/f3}
end
function pointLiesOnLine(x,y,x1,y1,x2,y2)
local dx1 = x-x1
local dy1 = y-y1
local dx2 = x-x2
local dy2 = y-y2
local crossProduct = dy1*dx2 -dx1*dy2
if crossProduct ~= 0 then return false
else
if ((x1>=x) and (x>=x2)) or ((x2>=x) and (x>=x1)) then
if ((y1>=y) and (y>=y2)) or ((y2>=y) and (y>=y1)) then
return true
else return false end
else return false end
end
end
function dist(x1,y1,x2,y2)
local dx = x1-x2
local dy = y1-y2
return math.sqrt(dx*dx + dy* dy)
end
function findMinDistBetnPointAndLine(x1,y1,x2,y2,x3,y3)
-- finds the min distance between (x3,y3) and line (x1,y2)--(x2,y2)
local A2,B2,C2,A1,B1,C1
local dx = y2-y1
local dy = x2-x1
if dx == 0 then A2=1 B2=0 C2=-x3 A1=0 B1=1 C1=-y1
elseif dy == 0 then A2=0 B2=1 C2=-y3 A1=1 B1=0 C1=-x1
else
local m1 = dy/dx
local m2 = -1/m1
A2=m2 B2=-1 C2=y3-m2*x3 A1=m1 B1=-1 C1=y1-m1*x1
end
local intsecPoint= solveLinearEquation(A1,B1,C1,A2,B2,C2)
if pointLiesOnLine(intsecPoint.x, intsecPoint.y,x1,y1,x2,y2) then
return dist(intsecPoint.x, intsecPoint.y, x3,y3)
else
return math.min(dist(x3,y3,x1,y1),dist(x3,y3,x2,y2))
end
end
この回答は、承認された回答のJavaScriptソリューションに基づいています。ES6 + CoffeeScriptに含まれているため、主に関数名が長く、関数構文が短く、より適切にフォーマットされています。
distanceSquared = (v, w)=> Math.pow(v.x - w.x, 2) + Math.pow(v.y - w.y, 2);
distance = (v, w)=> Math.sqrt(distanceSquared(v, w));
distanceToLineSegmentSquared = (p, v, w)=> {
l2 = distanceSquared(v, w);
if (l2 === 0) {
return distanceSquared(p, v);
}
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
t = Math.max(0, Math.min(1, t));
return distanceSquared(p, {
x: v.x + t * (w.x - v.x),
y: v.y + t * (w.y - v.y)
});
}
distanceToLineSegment = (p, v, w)=> {
return Math.sqrt(distanceToLineSegmentSquared(p, v));
}
distanceSquared = (v, w)-> (v.x - w.x) ** 2 + (v.y - w.y) ** 2
distance = (v, w)-> Math.sqrt(distanceSquared(v, w))
distanceToLineSegmentSquared = (p, v, w)->
l2 = distanceSquared(v, w)
return distanceSquared(p, v) if l2 is 0
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2
t = Math.max(0, Math.min(1, t))
distanceSquared(p, {
x: v.x + t * (w.x - v.x)
y: v.y + t * (w.y - v.y)
})
distanceToLineSegment = (p, v, w)->
Math.sqrt(distanceToLineSegmentSquared(p, v, w))
#distance beetween segment ab and point c in 2D space
getDistance_ort_2 <- function(a, b, c){
#go to complex numbers
A<-c(a[1]+1i*a[2],b[1]+1i*b[2])
q=c[1]+1i*c[2]
#function to get coefficients of line (ab)
getAlphaBeta <- function(A)
{ a<-Re(A[2])-Re(A[1])
b<-Im(A[2])-Im(A[1])
ab<-as.numeric()
ab[1] <- -Re(A[1])*b/a+Im(A[1])
ab[2] <-b/a
if(Im(A[1])==Im(A[2])) ab<- c(Im(A[1]),0)
if(Re(A[1])==Re(A[2])) ab <- NA
return(ab)
}
#function to get coefficients of line ortogonal to line (ab) which goes through point q
getAlphaBeta_ort<-function(A,q)
{ ab <- getAlphaBeta(A)
coef<-c(Re(q)/ab[2]+Im(q),-1/ab[2])
if(Re(A[1])==Re(A[2])) coef<-c(Im(q),0)
return(coef)
}
#function to get coordinates of interception point
#between line (ab) and its ortogonal which goes through point q
getIntersection_ort <- function(A, q){
A.ab <- getAlphaBeta(A)
q.ab <- getAlphaBeta_ort(A,q)
if (!is.na(A.ab[1])&A.ab[2]==0) {
x<-Re(q)
y<-Im(A[1])}
if (is.na(A.ab[1])) {
x<-Re(A[1])
y<-Im(q)
}
if (!is.na(A.ab[1])&A.ab[2]!=0) {
x <- (q.ab[1] - A.ab[1])/(A.ab[2] - q.ab[2])
y <- q.ab[1] + q.ab[2]*x}
xy <- x + 1i*y
return(xy)
}
intersect<-getIntersection_ort(A,q)
if ((Mod(A[1]-intersect)+Mod(A[2]-intersect))>Mod(A[1]-A[2])) {dist<-min(Mod(A[1]-q),Mod(A[2]-q))
} else dist<-Mod(q-intersect)
return(dist)
}
Geometryを使用したJavaScriptの場合:
var a = { x:20, y:20};//start segment
var b = { x:40, y:30};//end segment
var c = { x:37, y:14};//point
// magnitude from a to c
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );
// magnitude from b to c
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );
// magnitude from a to b (base)
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );
// perimeter of triangle
var p = ac + bc + ab;
// area of the triangle
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );
// height of the triangle = distance
var h = ( area * 2 ) / ab;
console.log ("height: " + h);
3D線分と点のEigenC++バージョン
// Return minimum distance between line segment: head--->tail and point
double MinimumDistance(Eigen::Vector3d head, Eigen::Vector3d tail,Eigen::Vector3d point)
{
double l2 = std::pow((head - tail).norm(),2);
if(l2 ==0.0) return (head - point).norm();// head == tail case
// Consider the line extending the segment, parameterized as head + t (tail - point).
// We find projection of point onto the line.
// It falls where t = [(point-head) . (tail-head)] / |tail-head|^2
// We clamp t from [0,1] to handle points outside the segment head--->tail.
double t = max(0,min(1,(point-head).dot(tail-head)/l2));
Eigen::Vector3d projection = head + t*(tail-head);
return (point - projection).norm();
}
上記のJoshuaの回答に基づいた、自己完結型のDelphi/Pascalバージョンの関数を次に示します。VCL画面グラフィックスにTPointを使用しますが、必要に応じて簡単に調整できる必要があります。
function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
a, b, c, d: double;
len_sq: double;
param: double;
xx, yy: double;
dx, dy: double;
begin
a := pt.x - pt1.x;
b := pt.y - pt1.y;
c := pt2.x - pt1.x;
d := pt2.y - pt1.y;
len_sq := (c * c) + (d * d);
param := -1;
if (len_sq <> 0) then
begin
param := ((a * c) + (b * d)) / len_sq;
end;
if param < 0 then
begin
xx := pt1.x;
yy := pt1.y;
end
else if param > 1 then
begin
xx := pt2.x;
yy := pt2.y;
end
else begin
xx := pt1.x + param * c;
yy := pt1.y + param * d;
end;
dx := pt.x - xx;
dy := pt.y - yy;
result := sqrt( (dx * dx) + (dy * dy))
end;
http://paulbourke.net/geometry/pointlineplane/source.cの迅速な実装
static func magnitude(p1: CGPoint, p2: CGPoint) -> CGFloat {
let vector = CGPoint(x: p2.x - p1.x, y: p2.y - p1.y)
return sqrt(pow(vector.x, 2) + pow(vector.y, 2))
}
/// http://paulbourke.net/geometry/pointlineplane/
/// http://paulbourke.net/geometry/pointlineplane/source.c
static func pointDistanceToLine(point: CGPoint, lineStart: CGPoint, lineEnd: CGPoint) -> CGFloat? {
let lineMag = magnitude(p1: lineEnd, p2: lineStart)
let u = (((point.x - lineStart.x) * (lineEnd.x - lineStart.x)) +
((point.y - lineStart.y) * (lineEnd.y - lineStart.y))) /
(lineMag * lineMag)
if u < 0 || u > 1 {
// closest point does not fall within the line segment
return nil
}
let intersectionX = lineStart.x + u * (lineEnd.x - lineStart.x)
let intersectionY = lineStart.y + u * (lineEnd.y - lineStart.y)
return magnitude(p1: point, p2: CGPoint(x: intersectionX, y: intersectionY))
}
Luaソリューション
-- distance from point (px, py) to line segment (x1, y1, x2, y2)
function distPointToLine(px,py,x1,y1,x2,y2) -- point, start and end of the segment
local dx,dy = x2-x1,y2-y1
local length = math.sqrt(dx*dx+dy*dy)
dx,dy = dx/length,dy/length -- normalization
local p = dx*(px-x1)+dy*(py-y1)
if p < 0 then
dx,dy = px-x1,py-y1
return math.sqrt(dx*dx+dy*dy), x1, y1 -- distance, nearest point
elseif p > length then
dx,dy = px-x2,py-y2
return math.sqrt(dx*dx+dy*dy), x2, y2 -- distance, nearest point
end
return math.abs(dy*(px-x1)-dx*(py-y1)), x1+dx*p, y1+dy*p -- distance, nearest point
end
ポリライン(3つ以上のセグメントを持つライン)の場合:
-- if the (poly-)line has several segments, just iterate through all of them:
function nearest_sector_in_line (x, y, line)
local x1, y1, x2, y2, min_dist
local ax,ay = line[1], line[2]
for j = 3, #line-1, 2 do
local bx,by = line[j], line[j+1]
local dist = distPointToLine(x,y,ax,ay,bx,by)
if not min_dist or dist < min_dist then
min_dist = dist
x1, y1, x2, y2 = ax,ay,bx,by
end
ax, ay = bx, by
end
return x1, y1, x2, y2
end
例:
-- call it:
local x1, y1, x2, y2 = nearest_sector_in_line (7, 4, {0,0, 10,0, 10,10, 0,10})
HSQLDBのSQL実装は次のとおりです。
CREATE FUNCTION dist_to_segment(px double, py double, vx double, vy double, wx double, wy double)
RETURNS double
BEGIN atomic
declare l2 double;
declare t double;
declare nx double;
declare ny double;
set l2 =(vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
IF l2 = 0 THEN
RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
ELSE
set t = ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
set t = GREATEST(0, LEAST(1, t));
set nx=vx + t * (wx - vx);
set ny=vy + t * (wy - vy);
RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
END IF;
END;
そしてPostgresの実装:
CREATE FUNCTION dist_to_segment(px numeric, py numeric, vx numeric, vy numeric, wx numeric, wy numeric)
RETURNS numeric
AS $$
declare l2 numeric;
declare t numeric;
declare nx numeric;
declare ny numeric;
BEGIN
l2 := (vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
IF l2 = 0 THEN
RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
ELSE
t := ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
t := GREATEST(0, LEAST(1, t));
nx := vx + t * (wx - vx);
ny := vy + t * (wy - vy);
RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
END IF;
END;
$$ LANGUAGE plpgsql;
これのGodot(GDscript)実装が必要だったので、 grumdrigの受け入れられた答えに基づいて実装しました。
func minimum_distance(v: Vector2, w: Vector2, p: Vector2):
# Return minimum distance between line segment vw and point p
var l2: float = (v - w).length_squared() # i.e. |w-v|^2 - avoid a sqrt
if l2 == 0.0:
return p.distance_to(v) # v == w case
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
var t: float = max(0, min(1, (p - v).dot(w - v) / l2))
var projection: Vector2 = v + t * (w - v) # Projection falls on the segment
return p.distance_to(projection)