他の返信での議論は素晴らしいので、私はそれらのどれも繰り返さないでしょうが、コードはありません。これは、floatのペアが乗算されたときに正確に1.0になるかどうかを実際にチェックするためのコードです。
コードはいくつかの仮定/アサーションを行います(通常はx86プラットフォームで満たされます):
- float
'sは32ビットバイナリ(AKA single precision
)IEEE-754
- int
'sまたはlong
'sは32ビットです(可用性に依存しないことにしました) of uint32_t
)
-8873283.0fmemcpy()
が0x4B076543になるようにfloatをint / longにコピーします(つまり、特定の「エンディアン」が期待されます)
追加の前提条件の1つは、次のとおりです。-乗算
される実際のfloatを受け取ります*
(つまり、floatの乗算では、数学ハードウェア/ライブラリが内部で使用できるより高い精度の値は使用されません)。
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#define C_ASSERT(expr) extern char CAssertExtern[(expr)?1:-1]
#if UINT_MAX >= 0xFFFFFFFF
typedef unsigned int uint32;
#else
typedef unsigned long uint32;
#endif
typedef unsigned long long uint64;
C_ASSERT(CHAR_BIT == 8);
C_ASSERT(sizeof(uint32) == 4);
C_ASSERT(sizeof(float) == 4);
int ProductIsOne(float f1, float f2)
{
uint32 m1, m2;
int e1, e2, s1, s2;
int e;
uint64 m;
// Make sure floats are 32-bit IEE754 and
// reinterpreted as integers as we expect
{
static const float testf = 8873283.0f;
uint32 testi;
memcpy(&testi, &testf, sizeof(testf));
assert(testi == 0x4B076543);
}
memcpy(&m1, &f1, sizeof(f1));
s1 = m1 >= 0x80000000;
m1 &= 0x7FFFFFFF;
e1 = m1 >> 23;
m1 &= 0x7FFFFF;
if (e1 > 0) m1 |= 0x800000;
memcpy(&m2, &f2, sizeof(f2));
s2 = m2 >= 0x80000000;
m2 &= 0x7FFFFFFF;
e2 = m2 >> 23;
m2 &= 0x7FFFFF;
if (e2 > 0) m2 |= 0x800000;
if (e1 == 0xFF || e2 == 0xFF || s1 != s2) // Inf, NaN, different signs
return 0;
m = (uint64)m1 * m2;
if (!m || (m & (m - 1))) // not a power of 2
return 0;
e = e1 + !e1 - 0x7F - 23 + e2 + !e2 - 0x7F - 23;
while (m > 1) m >>= 1, e++;
return e == 0;
}
const float testData[][2] =
{
{ .1f, 10.0f },
{ 0.5f, 2.0f },
{ 0.25f, 2.0f },
{ 4.0f, 0.25f },
{ 0.33333333f, 3.0f },
{ 0.00000762939453125f, 131072.0f }, // 2^-17 * 2^17
{ 1.26765060022822940E30f, 7.88860905221011805E-31f }, // 2^100 * 2^-100
{ 5.87747175411143754E-39f, 1.70141183460469232E38f }, // 2^-127 (denormalized) * 2^127
};
int main(void)
{
int i;
for (i = 0; i < sizeof(testData) / sizeof(testData[0]); i++)
printf("%g * %g %c= 1\n",
testData[i][0], testData[i][1],
"!="[ProductIsOne(testData[i][0], testData[i][1])]);
return 0;
}
出力(ideone.comを参照):
0.1 * 10 != 1
0.5 * 2 == 1
0.25 * 2 != 1
4 * 0.25 == 1
0.333333 * 3 != 1
7.62939e-06 * 131072 == 1
1.26765e+30 * 7.88861e-31 == 1
5.87747e-39 * 1.70141e+38 == 1