8

c++ ベクトルまたは boost::multi_arrays を HDF5 データセットに簡単に書き込むために使用できるライブラリまたはヘッダーはありますか?

HDF5 C++ の例を見てきましたが、c++ 構文を使用して c 関数を呼び出すだけで、静的な c 配列をデータセットに書き込むだけです (create.cpp を参照)。

私は要点を逃していますか!?

前もって感謝します、アダム

4

2 に答える 2

7

multi_arrayHDF5形式でN次元sを記述する方法は次のとおりです

以下に短い例を示します。

#include <boost/multi_array.hpp>
using boost::multi_array;
using boost::extents;


// allocate array
int NX = 5,  NY = 6,  NZ = 7;
multi_array<double, 3>  float_data(extents[NX][NY][NZ]);

// initialise the array
for (int ii = 0; ii != NX; ii++)
    for (int jj = 0; jj != NY; jj++)
        for (int kk = 0; kk != NZ; kk++)
            float_data[ii][jj][kk]  = ii + jj + kk;

// 
// write to HDF5 format
// 
H5::H5File file("SDS.h5", H5F_ACC_TRUNC);
write_hdf5(file, "doubleArray", float_data );

のコードは次のとおりですwrite_hdf5()

まず、c++ 型を ( H5c++ API から) HDF5 型にマップする必要があります。<stdint.h>一部の型 (例: ) は標準型 (例: )uint8_tのエイリアスであるため、定義の重複につながる行をコメントアウトしました。unsigned char

#include <cstdint>

//!_______________________________________________________________________________________
//!     
//!     map types to HDF5 types
//!         
//!     
//!     \author lg (04 March 2013)
//!_______________________________________________________________________________________ 

template<typename T> struct get_hdf5_data_type
{   static H5::PredType type()  
    {   
        //static_assert(false, "Unknown HDF5 data type"); 
        return H5::PredType::NATIVE_DOUBLE; 
    }
};
template<> struct get_hdf5_data_type<char>                  {   H5::IntType type    {   H5::PredType::NATIVE_CHAR       };  };
//template<> struct get_hdf5_data_type<unsigned char>       {   H5::IntType type    {   H5::PredType::NATIVE_UCHAR      };  };
//template<> struct get_hdf5_data_type<short>               {   H5::IntType type    {   H5::PredType::NATIVE_SHORT      };  };
//template<> struct get_hdf5_data_type<unsigned short>      {   H5::IntType type    {   H5::PredType::NATIVE_USHORT     };  };
//template<> struct get_hdf5_data_type<int>                 {   H5::IntType type    {   H5::PredType::NATIVE_INT        };  };
//template<> struct get_hdf5_data_type<unsigned int>        {   H5::IntType type    {   H5::PredType::NATIVE_UINT       };  };
//template<> struct get_hdf5_data_type<long>                {   H5::IntType type    {   H5::PredType::NATIVE_LONG       };  };
//template<> struct get_hdf5_data_type<unsigned long>       {   H5::IntType type    {   H5::PredType::NATIVE_ULONG      };  };
template<> struct get_hdf5_data_type<long long>             {   H5::IntType type    {   H5::PredType::NATIVE_LLONG      };  };
template<> struct get_hdf5_data_type<unsigned long long>    {   H5::IntType type    {   H5::PredType::NATIVE_ULLONG     };  };
template<> struct get_hdf5_data_type<int8_t>                {   H5::IntType type    {   H5::PredType::NATIVE_INT8       };  };
template<> struct get_hdf5_data_type<uint8_t>               {   H5::IntType type    {   H5::PredType::NATIVE_UINT8      };  };
template<> struct get_hdf5_data_type<int16_t>               {   H5::IntType type    {   H5::PredType::NATIVE_INT16      };  };
template<> struct get_hdf5_data_type<uint16_t>              {   H5::IntType type    {   H5::PredType::NATIVE_UINT16     };  };
template<> struct get_hdf5_data_type<int32_t>               {   H5::IntType type    {   H5::PredType::NATIVE_INT32      };  };
template<> struct get_hdf5_data_type<uint32_t>              {   H5::IntType type    {   H5::PredType::NATIVE_UINT32     };  };
template<> struct get_hdf5_data_type<int64_t>               {   H5::IntType type    {   H5::PredType::NATIVE_INT64      };  };
template<> struct get_hdf5_data_type<uint64_t>              {   H5::IntType type    {   H5::PredType::NATIVE_UINT64     };  };
template<> struct get_hdf5_data_type<float>                 {   H5::FloatType type  {   H5::PredType::NATIVE_FLOAT      };  };
template<> struct get_hdf5_data_type<double>                {   H5::FloatType type  {   H5::PredType::NATIVE_DOUBLE     };  };
template<> struct get_hdf5_data_type<long double>           {   H5::FloatType type  {   H5::PredType::NATIVE_LDOUBLE    };  };

次に、テンプレート転送マジックを少し使用して、データを出力する適切なタイプの関数を作成します。これはテンプレート コードであるため、プログラム内の複数のソース ファイルから HDF5 配列を出力する場合は、ヘッダー ファイルに存在する必要があります。

//!_______________________________________________________________________________________
//!     
//!     write_hdf5 multi_array
//!         
//!     \author leo Goodstadt (04 March 2013)
//!     
//!_______________________________________________________________________________________
template<typename T, std::size_t DIMENSIONS, typename hdf5_data_type>
void do_write_hdf5(H5::H5File file, const std::string& data_set_name, const boost::multi_array<T, DIMENSIONS>& data, hdf5_data_type& datatype)
{
    // Little endian for x86
    //FloatType datatype(get_hdf5_data_type<T>::type());
    datatype.setOrder(H5T_ORDER_LE);

    vector<hsize_t> dimensions(data.shape(), data.shape() + DIMENSIONS);
    H5::DataSpace dataspace(DIMENSIONS, dimensions.data());

    H5::DataSet dataset = file.createDataSet(data_set_name, datatype, dataspace);

    dataset.write(data.data(), datatype);
}

template<typename T, std::size_t DIMENSIONS>
void write_hdf5(H5::H5File file, const std::string& data_set_name, const boost::multi_array<T, DIMENSIONS>& data )
{

    get_hdf5_data_type<T> hdf_data_type;
    do_write_hdf5(file, data_set_name, data, hdf_data_type.type);
}
于 2013-03-05T10:16:23.590 に答える
1

私は何も知りません。HDF5 C++ ラッパーは、特に並列 HDF5 との組み合わせができないため、それほど優れたものではありません。そのため、約 2 時間で独自のラッパーを作成しましたが、問題なく動作します。最終的には、それを直接 (または C++ バインディングを作成する場合は間接的に) 呼び出す必要があります。

幸いなことに、vector と multi_arrays はどちらもストレージ内で連続しているため、これらのデータを直接 HDF5 関数呼び出しに渡すことができます。

于 2012-02-12T16:06:15.850 に答える