KD ツリーを使用した高速アルゴリズム
このアルゴリズムは、kd ツリーを作成し、各ポイントの最も近いペアを見つけます。kd ツリーの作成は O(n log 2 n) であり、点の最近傍を見つけるのは O(logn) です。クレジットはウィキペディアに行く必要があります.1つの記事では、kdツリーを作成する方法と、それらを使用して最も近い隣人を見つける方法について説明しています.
import java.util.*;
public class Program
{
public static void main(String[] args)
{
List<Point> points = generatePoints();
Point[] closest = new Point[points.size()];
KDTree tree = new KDTree(points, 0); // WILL MODIFY 'points'
for (int i = 0; i < points.size(); i++)
{
closest[i] = tree.findClosest(points.get(i));
}
for (int i = 0; i < points.size(); i++)
{
System.out.println(points.get(i) + " is closest to " + closest[i]);
}
}
private static List<Point> generatePoints()
{
ArrayList<Point> points = new ArrayList<Point>();
Random r = new Random();
for (int i = 0; i < 1000; i++)
{
points.add(new Point(r.nextInt() % 1000, r.nextInt() % 1000));
}
return points;
}
}
class Point
{
public static final Point INFINITY
= new Point(Double.POSITIVE_INFINITY,
Double.POSITIVE_INFINITY);
public double[] coord; // coord[0] = x, coord[1] = y
public Point(double x, double y)
{
coord = new double[] { x, y };
}
public double getX() { return coord[0]; }
public double getY() { return coord[1]; }
public double distance(Point p)
{
double dX = getX() - p.getX();
double dY = getY() - p.getY();
return Math.sqrt(dX * dX + dY * dY);
}
public boolean equals(Point p)
{
return (getX() == p.getX()) && (getY() == p.getY());
}
public String toString()
{
return "(" + getX() + ", " + getY() + ")";
}
public static class PointComp implements Comparator<Point>
{
int d; // the dimension to compare in (0 => x, 1 => y)
public PointComp(int dimension)
{
d = dimension;
}
public int compare(Point a, Point b)
{
return (int) (a.coord[d] - b.coord[d]);
}
}
}
class KDTree
{
// 2D k-d tree
private KDTree childA, childB;
private Point point; // defines the boundary
private int d; // dimension: 0 => left/right split, 1 => up/down split
public KDTree(List<Point> points, int depth)
{
childA = null;
childB = null;
d = depth % 2;
// find median by sorting in dimension 'd' (either x or y)
Comparator<Point> comp = new Point.PointComp(d);
Collections.sort(points, comp);
int median = (points.size() - 1) / 2;
point = points.get(median);
// Create childA and childB recursively.
// WARNING: subList() does not create a true copy,
// so the original will get modified.
if (median > 0)
{
childA = new KDTree(
points.subList(0, median),
depth + 1);
}
if (median + 1 < points.size())
{
childB = new KDTree(
points.subList(median + 1, points.size()),
depth + 1);
}
}
public Point findClosest(Point target)
{
Point closest = point.equals(target) ? Point.INFINITY : point;
double bestDist = closest.distance(target);
double spacing = target.coord[d] - point.coord[d];
KDTree rightSide = (spacing < 0) ? childA : childB;
KDTree otherSide = (spacing < 0) ? childB : childA;
/*
* The 'rightSide' is the side on which 'target' lies
* and the 'otherSide' is the other one. It is possible
* that 'otherSide' will not have to be searched.
*/
if (rightSide != null)
{
Point candidate = rightSide.findClosest(target);
if (candidate.distance(target) < bestDist)
{
closest = candidate;
bestDist = closest.distance(target);
}
}
if (otherSide != null && (Math.abs(spacing) < bestDist))
{
Point candidate = otherSide.findClosest(target);
if (candidate.distance(target) < bestDist)
{
closest = candidate;
bestDist = closest.distance(target);
}
}
return closest;
}
}
質問のコードを修正して
ください 複雑さを本当に気にしないのであれば、コードの唯一の問題は、前方を向いているが後方を向いていないことです。内側のループを複製して、j
from から(i - 1)
to に移動するだけ0
です。
Point[] points = sort(input());
int[] closest = new int[points.length];
for (int i = 0; i < points.length; i++)
{
double bestdist = Double.POSITIVE_INFINITY;
for (int j = i + 1; (j < points.length) && ((points[j].x - points[i].x) < bestdist); j++ )
{
double currdist = dist(points[i], points[j]);
if (currdist < bestdist)
{
closest[i] = j;
bestdist = currdist;
}
}
for (int j = i - 1; (j >= 0) && ((points[i].x - points[j].x) < bestdist); j-- )
{
double currdist = dist(points[i], points[j]);
if (currdist < bestdist)
{
closest[i] = j;
bestdist = currdist;
}
}
}