標準ライブラリ関数、コードの再利用。また、括弧の使用法と間隔は本当に打ちのめされています。
evaluate (V a) l =
case lookup a l
of Just x -> x
Nothing -> error $ "Unbound variable: " ++ show a
-- same as
evaluate (V a) l = maybe (error $ "Unbound variable: " ++ show a) id $ lookup a l
evaluate (Negation a) l = not $ evaluate a l
evaluate (Implication a b) l = evaluate (Negation a `Disjunction` b) l
さて、あなたはgenerateTruthTable
?それは簡単です。ブール変数のすべての可能な状態を取得し、評価された式をそれぞれの最後に追加するだけです。
generateTruthTable :: [Variable] -> LogicExpr -> [[(Variable, Bool)]]
generateTruthTable vs e = [l ++ [('E', evaluate e l)] | l <- allPossible vs]
これらすべての可能な状態を生成する関数があれば。
allPossible :: [Variable] -> [[(Variable, Bool)]]
私の機能的な腸の本能に従うと、これはカタモルフィズムであるべきだと感じます. 結局のところ、リスト内のすべてを調べる必要がありますが、別の構造のものを返します。これは入門レベルの CS クラスであるため、おそらく簡単な方法で分解できます。(コース番号が何であるかは気にしません。これは入門的なものです。)
allPossible = foldr step initial where
step v ls = ???; initial = ???
さて、foldr :: (a -> b -> b) -> b -> [a] -> b
最初の 2 つのパラメータは と でなければなりませstep :: a -> b -> b
んinitial :: b
。さて、allPossible :: [Variable] -> [[(Variable, Bool)]] = foldr step initial :: [a] -> b
. うーん、これは と を意味する必要がa = Variable
ありb = [[(Variable, Bool)]]
ます。step
これはとにとって何を意味するのinitial
でしょうか?
step :: Variable -> [[(Variable, Bool)]] -> [[(Variable, Bool)]]
initial :: [[(Variable, Bool)]]
面白い。どういうわけか、step
変数の状態のリストから単一の変数を追加する方法と、initial
変数をまったく含まないリストを追加する方法が必要です。
関数型プログラミングのパラダイムにすでに「クリック」することができている場合は、これで十分です。そうでない場合は、ここでどんな指示を受けたとしても、課題の期日までに 2 時間ほど待たされることになります。頑張ってください。課題の期限が過ぎてもまだ行き詰まっている場合は、教授に尋ねるか、ここで緊急ではない質問をしてください。
言語に基本的なユーザビリティの問題がある場合 (「構文は何ですか」、「実行時のセマンティクスは何ですか」、「 xxxの既存の機能はありますか」など):
クラスで同様のリソースが提供されていることを願っていますが、提供されていない場合でも、上記のすべてが Google 検索で簡単に見つけることができます。
適切な参考文献があれば、プログラマーなら誰でも、数時間以内に新しい言語の構文を習得し、数日以内にランタイムを実際に理解できるようになるはずです。もちろん、新しいパラダイムを習得するには時間がかかる場合があり、学生を同じ基準に保つのはやや不公平ですが、それがクラスの目的です.
スタック オーバーフローのより高度な問題に関する質問は、回答が少ないかもしれませんが、提供される怒りもはるかに少なくなります :) 宿題の質問は、「私のために仕事をしてください! ほとんどの人の目に。
ネタバレ
ごまかさないでください。ただし、Haskell でどのように素晴らしいことができるかを少しだけお見せします...
{-# LANGUAGE FlexibleInstances, UndecidableInstances #-}
{-# LANGUAGE OverlappingInstances, PatternGuards #-}
module Expr (Ring(..), (=:>), Expr(..), vars, eval, evalAll) where
import Control.Monad.Error
infixl 5 =:>, :=>
infixl 6 +:, -:, :+, :-
infixl 7 *:, :*
class (Eq a) => Ring a where
(+:) :: a -> a -> a; (-:) :: a -> a -> a; x -: y = x +: invert y
(*:) :: a -> a -> a; invert :: a -> a; invert x = zero -: x
zero :: a; one :: a
(=:>) :: (Ring a) => a -> a -> a
(=:>) = flip (-:)
instance (Num a) => Ring a where
(+:) = (+); (-:) = (-); (*:) = (*)
invert = negate; zero = 0; one = 1
instance Ring Bool where
(+:) = (||); (*:) = (&&)
invert = not; zero = False; one = True
data Expr a b
= Expr a b :+ Expr a b | Expr a b :- Expr a b
| Expr a b :* Expr a b | Expr a b :=> Expr a b
| Invert (Expr a b) | Var a | Const b
paren :: ShowS -> ShowS
paren ss s = '(' : ss (')' : s)
instance (Show a, Show b) => Show (Expr a b) where
showsPrec _ (Const c) = ('@':) . showsPrec 9 c
showsPrec _ (Var v) = ('$':) . showsPrec 9 v
showsPrec _ (Invert e) = ('!':) . showsPrec 9 e
showsPrec n e@(a:=>b)
| n > 5 = paren $ showsPrec 0 e
| otherwise = showsPrec 7 a . ('=':) . ('>':) . showsPrec 5 b
showsPrec n e@(a:*b)
| n > 7 = paren $ showsPrec 0 e
| otherwise = showsPrec 7 a . ('*':) . showsPrec 7 b
showsPrec n e | n > 6 = paren $ showsPrec 0 e
showsPrec _ (a:+b) = showsPrec 6 a . ('+':) . showsPrec 6 b
showsPrec _ (a:-b) = showsPrec 6 a . ('-':) . showsPrec 6 b
vars :: (Eq a) => Expr a b -> [a]
vars (a:+b) = vars a ++ vars b
vars (a:-b) = vars a ++ vars b
vars (a:*b) = vars a ++ vars b
vars (a:=>b) = vars a ++ vars b
vars (Invert e) = vars e; vars (Var v) = [v]; vars _ = []
eval :: (Eq a, Show a, Ring b, Monad m) => [(a, b)] -> Expr a b -> m b
eval m (a:+b) = return (+:) `ap` eval m a `ap` eval m b
eval m (a:-b) = return (-:) `ap` eval m a `ap` eval m b
eval m (a:*b) = return (*:) `ap` eval m a `ap` eval m b
eval m (a:=>b) = return (=:>) `ap` eval m a `ap` eval m b
eval m (Invert e) = return invert `ap` eval m e
eval m (Var v)
| Just c <- lookup v m = return c
| otherwise = fail $ "Unbound variable: " ++ show v
eval _ (Const c) = return c
namedProduct :: [(a, [b])] -> [[(a, b)]]
namedProduct = foldr (\(v, cs) l -> concatMap (\c -> map ((v, c):) l) cs) [[]]
evalAll :: (Eq a, Show a, Ring b) => [b] -> a -> Expr a b -> [[(a, b)]]
evalAll range name e =
[ vs ++ [(name, either error id $ eval vs e)]
| vs <- namedProduct $ zip (vars e) (repeat range)
]
$ ghci
GHCi、バージョン 6.10.2: http://www.haskell.org/ghc/ :? 助けを求める
パッケージ ghc-prim をロード中 ... リンク中 ... 完了。
パッケージ整数を読み込んでいます...リンクしています...完了。
パッケージベースを読み込んでいます...リンクしています...完了。
前奏曲> :l Expr.hs
[1/1] Expr のコンパイル ( Expr.hs、解釈済み )
わかりました、モジュールがロードされました: Expr.
*Expr> mapM_print . evalAll [1..3] 'C' $ Var 'A' :* Var 'B'
パッケージ mtl-1.1.0.2 を読み込み中 ... リンク中 ... 完了。
[('A',1),('B',1),('C',1)]
[('A',1),('B',2),('C',2)]
[('A',1),('B',3),('C',3)]
[('A',2),('B',1),('C',2)]
[('A',2),('B',2),('C',4)]
[('A',2),('B',3),('C',6)]
[('A',3),('B',1),('C',3)]
[('A',3),('B',2),('C',6)]
[('A',3),('B',3),('C',9)]
*Expr> let expr = Var 'A' :=> (Var 'B' :+ Var 'C') :* Var 'D'
*式>式
$'A'=>($'B'+$'C')*$'D'
*Expr> mapM_print $ evalAll [True, False] 'E' expr
[('A',True),('B',True),('C',True),('D',True),('E',True)]
[('A',True),('B',True),('C',True),('D',False),('E',False)]
[('A',True),('B',True),('C',False),('D',True),('E',True)]
[('A',True),('B',True),('C',False),('D',False),('E',False)]
[('A',True),('B',False),('C',True),('D',True),('E',True)]
[('A',True),('B',False),('C',True),('D',False),('E',False)]
[('A',True),('B',False),('C',False),('D',True),('E',False)]
[('A',True),('B',False),('C',False),('D',False),('E',False)]
[('A',False),('B',True),('C',True),('D',True),('E',True)]
[('A',False),('B',True),('C',True),('D',False),('E',True)]
[('A',False),('B',True),('C',False),('D',True),('E',True)]
[('A',False),('B',True),('C',False),('D',False),('E',True)]
[('A',False),('B',False),('C',True),('D',True),('E',True)]
[('A',False),('B',False),('C',True),('D',False),('E',True)]
[('A',False),('B',False),('C',False),('D',True),('E',True)]
[('A',False),('B',False),('C',False),('D',False),('E',True)]