22

私は本当に一般的なプログラミングの質問のような問題を抱えていますが、私の実装はJavaであるため、そのように例を提供します

私はこのようなクラスを持っています:

public class Foo {
    LinkedHashMap<String, Vector<String>> dataStructure;

    public Foo(LinkedHashMap<String, Vector<String>> dataStructure) {
        this.dataStructure = dataStructure;
    }

    public String[][] allUniqueCombinations() {
        //this is what I need to do
    }
}

LinkedHashMapLHM 内のすべての値のすべての一意の組み合わせを表すmy からネストされた配列を生成する必要があります。たとえば、私の LHM が次のようになっている場合 (疑似コードですが、アイデアを得ることができると思います..):

{"foo" => ["1","2","3"], "bar" => ["3","2"], "baz" => ["5","6","7"]};

次に、私String[][]は次のようになります。

{
   {"foo","bar","baz"},
   {"1","3","5"},
   {"1","2","5"},
   {"1","3","6"},
   {"1","2","6"},
   {"1","3","7"},
   {"1","2","7"},
   {"2","3","5"},
   {"2","2","5"},
   {"2","3","6"},
   {"2","2","6"},
   {"2","3","7"},
   {"2","2","7"},
   {"3","3","5"},
   {"3","2","5"},
   {"3","3","6"},
   {"3","2","6"},
   {"3","3","7"},
   {"3","2","7"},
}

これですべてだと思います。手動で (明らかに) 作成したので、セットを見逃している可能性がありますが、これは私がやろうとしていることを示していると思います。すべてのユニークな組み合わせが存在する限り、各セットの順序は関係ありません。また、明確にするために、LHM に含まれる要素の数も、後続の各 Vector に含まれる要素の数もわかりません。単一の配列内のすべての要素のすべての一意の組み合わせが必要な場合に一致する回答を見つけましたが、これに正確に適合するものはありません。

更新:私の実世界の例は実際には文字列であるため、型を文字列に変更しました。例を読みやすくするために整数を使用しようとしましたが、これまでに得た回答は文字列にうまく変換されません。はい、それらは数値ですが、私の実際のケースでは、この特定のアプリケーションを使用する人以外にはあまり意味のない文字列になります。したがって、これは単なる抽象化です。

4

12 に答える 12

22

次のようなことを試してください:

public static void generate(int[][] sets) {
    int solutions = 1;
    for(int i = 0; i < sets.length; solutions *= sets[i].length, i++);
    for(int i = 0; i < solutions; i++) {
        int j = 1;
        for(int[] set : sets) {
            System.out.print(set[(i/j)%set.length] + " ");
            j *= set.length;
        }
        System.out.println();
    }
}

public static void main(String[] args) {
    generate(new int[][]{{1,2,3}, {3,2}, {5,6,7}});
}

印刷されます:

1 3 5
2 3 5
3 3 5
1 2 5
2 2 5
3 2 5
1 3 6
2 3 6
3 3 6
1 2 6
2 2 6
3 2 6
1 3 7
2 3 7
3 3 7
1 2 7
2 2 7
3 2 7

KnuthのTAOCP本の1つに基づいて(私が信じている)上記のアルゴリズムを実装しました(コメントで@chikitinにはより具体的な参照があります:それはPRE FASCICLE 2Aセクション7.2.1.1 Generating All n-tuple、 of The Art OfにありますKnuth、Addison Wesley によるコンピューター プログラミング)。

arrays という名前を付けましたsetが、もちろん一意の要素を保持する必要はありません。私がそれを使用したとき、それらには独自の要素が含まれていたため、名前が付けられました。

編集

これはほぼ 1 対 1 の翻訳です。

import java.util.Arrays;
import java.util.LinkedHashMap;
import java.util.Vector;

public class Foo {

    private LinkedHashMap<String, Vector<String>> dataStructure;

    public Foo(LinkedHashMap<String, Vector<String>> dataStructure){
        this.dataStructure = dataStructure;
    }

    public String[][] allUniqueCombinations(){
        int n = dataStructure.keySet().size();
        int solutions = 1;

        for(Vector<String> vector : dataStructure.values()) {
            solutions *= vector.size();            
        }

        String[][] allCombinations = new String[solutions + 1][];
        allCombinations[0] = dataStructure.keySet().toArray(new String[n]);

        for(int i = 0; i < solutions; i++) {
            Vector<String> combination = new Vector<String>(n);
            int j = 1;
            for(Vector<String> vec : dataStructure.values()) {
                combination.add(vec.get((i/j)%vec.size()));
                j *= vec.size();
            }
            allCombinations[i + 1] = combination.toArray(new String[n]);
        }

        return allCombinations;
    }

    public static void main(String[] args) {
        LinkedHashMap<String, Vector<String>> data = new LinkedHashMap<String, Vector<String>>();
        data.put("foo", new Vector<String>(Arrays.asList("1", "2", "3")));
        data.put("bar", new Vector<String>(Arrays.asList("3", "2")));
        data.put("baz", new Vector<String>(Arrays.asList("5", "6", "7")));

        Foo foo = new Foo(data);

        for(String[] combination : foo.allUniqueCombinations()) {
            System.out.println(Arrays.toString(combination));            
        }
    }
}

上記のクラスを実行すると、以下が出力されます。

[foo, bar, baz]
[1, 3, 5]
[2, 3, 5]
[3, 3, 5]
[1, 2, 5]
[2, 2, 5]
[3, 2, 5]
[1, 3, 6]
[2, 3, 6]
[3, 3, 6]
[1, 2, 6]
[2, 2, 6]
[3, 2, 6]
[1, 3, 7]
[2, 3, 7]
[3, 3, 7]
[1, 2, 7]
[2, 2, 7]
[3, 2, 7]
于 2012-03-06T20:56:44.760 に答える
4

Guava には、指定されたセットのリストのデカルト積を返すユーティリティ メソッドSets.cartesianProductがあります。

于 2015-05-12T21:42:33.000 に答える
4

製品を遅延して生成するのはどうですか。アクセスしているときにのみタプルを作成しますか?

/**
* A random access view of tuples of a cartesian product of ArrayLists
*
* Orders tuples in the natural order of the cartesian product
*
* @param T the type for both the values and the stored tuples, ie. values of the cartesian factors are singletons
* While the type of input sets is List<T> with elements being treated as singletons
*
*/

abstract public class CartesianProductView<T> extends AbstractList<T> {

private final List<List<T>> factors;
private final int size;

/**
 * @param factors the length of the factors (ie. the elements of the factors argument) should not change,
 *  otherwise get may not return all tuples, or throw exceptions when trying to access the factors outside of range
 */
public CartesianProductView(List<List<T>> factors) {
    this.factors = new ArrayList<>(factors);
    Collections.reverse(this.factors);
    int acc = 1;
    for (Iterator<List<T>> iter = this.factors.iterator(); iter.hasNext(); ) {
        acc *= iter.next().size();
    }
    this.size = acc;
}

@Override
public T get(int index) {
    if (index < 0 || index >= size()) {
        throw new IndexOutOfBoundsException(String.format("index %d > size() %d", index, size()));
    }

    T acc = null;
    for (Iterator<List<T>> iter = factors.iterator(); iter.hasNext();) {
        List<T> set = iter.next();
        acc = makeTupleOrSingleton(set.get(index % set.size()), acc);
        index /= set.size();
    }
    return acc;
}

@Override
public int size() {
    return size;
}

private T makeTupleOrSingleton(T left, T right) {
    if (right == null) {
        return left;
    }
    return makeTuple(left, right);
}

/**
 *
 * @param left      a singleton of a value
 * @param right     a tuple of values taken from the cartesian product factors, with null representing the empty set
 * @return          the sum of left and right, with the value of left being put in front
 */
abstract protected T makeTuple(T left, T right);
}

そして、このように使用します

final List<List<String>> l1 = new ArrayList<List<String>>() {{ add(singletonList("a")); add(singletonList("b")); add(singletonList("c")); }};
final List<List<String>> l2 = new ArrayList<List<String>>() {{ add(singletonList("X")); add(singletonList("Y")); }};
final List<List<String>> l3 = new ArrayList<List<String>>() {{ add(singletonList("1")); add(singletonList("2")); add(singletonList("3")); add(singletonList("4")); }};


List<List<List<String>>> in = new ArrayList<List<List<String>>>() {{ add(l1); add(l2); add(l3); }};

List<List<String>> a = new CartesianProductView<List<String>>(in) {

    @Override
    protected List<String> makeTuple(final List<String> left, final List<String> right) {
        return new ArrayList<String>() {{ add(left.get(0)); addAll(right); }};
    }

};

System.out.println(a);

結果:

[[a, X, 1], [a, X, 2], [a, X, 3], [a, X, 4], [a, Y, 1], [a, Y, 2], [a, Y, 3], [a, Y, 4], [b, X, 1], [b, X, 2], [b, X, 3], [b, X, 4], [b, Y, 1], [b, Y, 2], [b, Y, 3], [b, Y, 4], [c, X, 1], [c, X, 2], [c, X, 3], [c, X, 4], [c, Y, 1], [c, Y, 2], [c, Y, 3], [c, Y, 4]]

追加のボーナスとして、文字列をすべて結合して使用できます。

final List<String> l1 = new ArrayList<String>() {{ add("a"); add("b"); add("c"); }};
final List<String> l2 = new ArrayList<String>() {{ add("X"); add("Y"); }};
final List<String> l3 = new ArrayList<String>() {{ add("1"); add("2"); add("3"); add("4"); }};


List<List<String>> in = new ArrayList<List<String>>() {{ add(l1); add(l2); add(l3); }};

List<String> a = new CartesianProductView<String>(in) {

    @Override
    protected String makeTuple(String left, String right) {
        return String.format("%s%s", left, right);
    }

};

System.out.println(a);

結果:

[aX1, aX2, aX3, aX4, aY1, aY2, aY3, aY4, bX1, bX2, bX3, bX4, bY1, bY2, bY3, bY4, cX1, cX2, cX3, cX4, cY1, cY2, cY3, cY4]
于 2013-04-04T23:59:17.577 に答える
3

次の 2 つのメソッドを見てください。これらのメソッドは、まさにあなたが要求したことを実行します。リストの長さやマップ内のキーの数に関係なく、生成された組み合わせは正しいものです。

以下のコードは、リストのリストのデカルト積を計算するための Python の関数のアルゴリズムに基づいた反復型です。itertools.product()

public String[][] allUniqueCombinations() {

    List<String> labels = new ArrayList<String>();
    List<List<String>> lists = new ArrayList<List<String>>();

    for (Map.Entry<String, Vector<String>> entry : dataStructure.entrySet()) {
        labels.add(entry.getKey());
        lists.add(entry.getValue());
    }

    List<List<String>> combinations = product(lists);
    int m = combinations.size() + 1;
    int n = labels.size();
    String[][] answer = new String[m][n];

    for (int i = 0; i < n; i++)
        answer[0][i] = labels.get(i);
    for (int i = 1; i < m; i++)
        for (int j = 0; j < n; j++)
            answer[i][j] = combinations.get(i-1).get(j);

    return answer;

}

private List<List<String>> product(List<List<String>> lists) {

    List<List<String>> result = new ArrayList<List<String>>();
    result.add(new ArrayList<String>());

    for (List<String> e : lists) {
        List<List<String>> tmp1 = new ArrayList<List<String>>();
        for (List<String> x : result) {
            for (String y : e) {
                List<String> tmp2 = new ArrayList<String>(x);
                tmp2.add(y);
                tmp1.add(tmp2);
            }
        }
        result = tmp1;
    }

    return result;

}

質問の例でそれらをテストしました:

LinkedHashMap<String, Vector<String>> sample = 
    new LinkedHashMap<String, Vector<String>>();

Vector<String> v1 = new Vector<String>();
v1.add("1"); v1.add("2"); v1.add("3");
Vector<String> v2 = new Vector<String>();
v2.add("3"); v2.add("2");
Vector<String> v3 = new Vector<String>();
v3.add("5"); v3.add("6"); v3.add("7");

sample.put("foo", v1);
sample.put("bar", v2);
sample.put("baz", v3);

Foo foo = new Foo(sample);
String[][] ans = foo.allUniqueCombinations();
for (String[] row : ans)
    System.out.println(Arrays.toString(row));

出力される答えは予想どおりです (ただし、組み合わせは異なる順序で表示されます)。

[foo, bar, baz]
[1, 3, 5]
[1, 3, 6]
[1, 3, 7]
[1, 2, 5]
[1, 2, 6]
[1, 2, 7]
[2, 3, 5]
[2, 3, 6]
[2, 3, 7]
[2, 2, 5]
[2, 2, 6]
[2, 2, 7]
[3, 3, 5]
[3, 3, 6]
[3, 3, 7]
[3, 2, 5]
[3, 2, 6]
[3, 2, 7]
于 2012-03-07T01:10:03.713 に答える
2

これは、 Functional Java の List モナドを使用して非常に簡単に解決することもできます。

import fj.data.List;

public class cartesian {
 public static void main(String[] args) {
  List<String>  foo = List.list("a", "b");
  List<Integer> bar = List.list(1,2,3);
  List<Float>   baz = List.list(0.2f,0.4f,0.3f);

  List<P3<String, Integer, Float>> 
  // the Cartesian product is assembled into a list of P3's
  result = foo.bind(bar, baz, P.<String, Integer, Float>p3()); 

  String out = Show.listShow(Show.p3Show(Show.stringShow, Show.intShow, Show.floatShow))
               .showS(result);
  System.out.println(out);
 }
}
于 2012-07-24T23:03:35.263 に答える
1

私はパーティーに遅れましたが、塩見のリンクをたどり、関数を Java に翻訳しました。その結果、簡単に理解できるアルゴリズムが得られます (Bart Kiers のソリューションを理解するのに苦労したため、少し遅いかもしれません)。

これは次のとおりです (キーは int です。String への置換は簡単なはずです)。

使用法

    public void testProduct(){
        Map<Integer, List<String>> data =   new LinkedHashMap<Integer, List<String>>(){{                
            put(0, new ArrayList<String>(){{
                add("John"); add("Sarah");                      
            }});                
            put(1, new ArrayList<String>(){{
                add("Red"); add("Green"); add("Blue"); add("Orange");
            }});
            put(2, new ArrayList<String>(){{
                add("Apple"); add("Tomatoe"); add("Bananna");                   
            }});
    }};

        List<String[]> product =  GetCrossProduct(data);
        for(String[] o : product)
            System.out.println(Arrays.toString(o));

    }

結果

[John, Red, Apple]
[John, Red, Tomatoe]
[John, Red, Bananna]
[John, Green, Apple]
[John, Green, Tomatoe]
[John, Green, Bananna]
[John, Blue, Apple]
[John, Blue, Tomatoe]
[John, Blue, Bananna]
[John, Orange, Apple]
[John, Orange, Tomatoe]
[John, Orange, Bananna]
[Sarah, Red, Apple]
[Sarah, Red, Tomatoe]
[Sarah, Red, Bananna]
[Sarah, Green, Apple]
[Sarah, Green, Tomatoe]
[Sarah, Green, Bananna]
[Sarah, Blue, Apple]
[Sarah, Blue, Tomatoe]
[Sarah, Blue, Bananna]
[Sarah, Orange, Apple]
[Sarah, Orange, Tomatoe]
[Sarah, Orange, Bananna]

デカルト積関数

    public static List<String[]> GetCrossProduct(Map<Integer, List<String>> lists)
    {
        List<String[]> results = new ArrayList<String[]>();
        GetCrossProduct(results, lists, 0, new String[(lists.size())]);
        return results;
    }

    private void GetCrossProduct(List<String[]> results, Map<Integer, List<String>> lists, int depth, String[] current)
    {
        for (int i = 0; i < lists.get(depth).size(); i++)
        {
            current[depth] = lists.get(depth).get(i);            
            if (depth < lists.keySet().size() - 1)
                GetCrossProduct(results, lists, depth + 1, current);
            else{
                results.add(Arrays.copyOf(current,current.length));                
            }
        }
    }       
于 2012-12-08T16:08:51.223 に答える
1

文字列のベクトルの LinkedHashMap は... - 面倒です。ソリューションを使用するために変換するのに多くの時間を費やさなければなりませんでしたが、最終的には ArrayOfArrays を生成せず、リストのリストを生成し、最後のステップを読者に伝えます。

import java.util.*;
/**
    CartesianProductLHM   
*/
public class CartesianProductLHM
{
    LinkedHashMap <String, Vector<String>> dataStructure;

    public CartesianProductLHM (final String[] data) {
        dataStructure = new LinkedHashMap <String, Vector<String>> ();
        for (String str : data)
        {
            String [] kv = str.split (":");
            String [] values = kv[1].split (","); 
            Vector <String> v = new Vector <String> ();
            for (String s: values) {
                v.add (s);
            //  System.out.print (s); 
            }
            // System.out.println ("\n---");
            dataStructure.put (kv[0], v);
        }
        // System.out.println ("    --- --- ---");
    }

    List <String> getCombiFor (final int i, final List <List <String>> livs) 
    {
        List <String> ls = new ArrayList <String> ();
        if (! livs.isEmpty ()) {
            List <String> vs = livs.remove (0); 
            int idx = i % vs.size (); 
            String elem = vs.get (idx);
            ls.add (elem);
            ls.addAll (getCombiFor (i / vs.size (), livs));
        }
        return ls;
    }

    List <String> getOuterCombiFor (int i, List <List <String>> coll) 
    {
        List <String> ls = new ArrayList <String> ();
        if (! coll.isEmpty ()) {
            List <List <String>> livs = new ArrayList <List <String>> ();
            for (List<String> li : coll) 
            {
                livs.add (li);
            }   
            ls.addAll (getCombiFor (i, livs));
        } 
        return ls;  
    }   

    public List <List <String>> allUniqueCombinations () {
        Collection <Vector <String>> li = dataStructure.values (); 
        List <List <String>> lls = new ArrayList <List <String>> ();
        for (Vector <String> vs : li) {
            List <String> l = new ArrayList <String> ();
            for (String s : vs) {
                l.add (s);
            }
            lls.add (l);
        }
        int count = 1;
        for (Vector <String> vec: li) {
            count *= vec.size ();
        }       
        List <List <String>> result = new ArrayList <List <String>> ();
        for (int i = 0; i < count; ++i) 
        {
            List <String> l = getOuterCombiFor (i, lls);
            result.add (l);
        }
        return result;  
    }

    public static void main (String args[])
    {
        String[] arr = {"foo:1,2,3", "bar:a,b", "baz:5,6,7"};
        CartesianProductLHM cp = new CartesianProductLHM (arr);
        List <List <String>> lls = cp.allUniqueCombinations ();
        for (List <String> ls : lls) 
        {
            for (String s : ls)
                System.out.print (s + "\t");
            System.out.println ();
        }
    }
}

はい、いくつかのテスト データを解析します。

主なアイデアは、いくつかのリスト (abc、12、defg、...) があり、pos 0 で 3 つの可能性、pos 1 で 2、pos 3 で 4 など、3*2*4 の組み合わせがあるということです。これまでのところ。

0 から 23 までの数字から、モジュロを使用して各サブリストから選択し、リストがなくなるまで、残りの数字を前のリストのサイズで割った残りのリストと残りのリストを再帰的にプロシージャに渡すことができます。

于 2012-03-07T03:50:32.500 に答える
1

ここにリンク、そのc#がありますが、それで作業できると確信しています!

于 2012-03-06T21:02:28.927 に答える
0

組み合わせを再帰的に生成できます。

public class Main {
    public static void main(String[] args) {
        int[][] arr = new int[][] { { 1, 2, 3 }, { 3, 2 }, { 5, 6, 7 } };
        cartesianProduct(arr, 0, new int[arr.length]);
    }

    private static void cartesianProduct(int[][] arr, int level, int[] cp) {
        if (level == arr.length) {
            for (int x : cp)
                System.out.print(x + " ");
            System.out.println();
            return;
        }

        for (int i = 0; i < arr[level].length; i++) {
            cp[level] = arr[level][i];
            cartesianProduct(arr, level + 1, cp);
        }
    }
}

出力:

1 3 5 
1 3 6 
1 3 7 
1 2 5 
1 2 6 
1 2 7 
2 3 5 
2 3 6 
2 3 7 
2 2 5 
2 2 6 
2 2 7 
3 3 5 
3 3 6 
3 3 7 
3 2 5 
3 2 6 
3 2 7 
于 2016-10-19T09:28:31.950 に答える